mariokhab
?>

Точка o— центр вписанной окружности треугольника abc, a1, b1, c1 — точки её касания со сторонами bc, ac, ab соответственно. прямые ao, bo, c1o пересекают прямую a1b1 в точках k, l, m соответственно. докажите, что ∠lc1m=∠kc1m.

Геометрия

Ответы

uttgroup

Решение : /////////////////////////////////////////////


Точка o— центр вписанной окружности треугольника abc, a1, b1, c1 — точки её касания со сторонами bc,
Kelena190533
Основанием конуса будет большее сечение шара, так как центр основания конуса совпадает с центром шара. Значит радиус основания конуса равен радиусу шара по условию. Значит, высота конуса тоже равна радиусу шара. Рассмотрим треугольник образованный радиусом основания, высотой конуса и его образующей. данный треугольник будет равносторонним прямоугольным треугольником с гипотенузой равной 2 корня из 3 (образующая). пусть катет равен х. тогда по теореме Пифагора получим:
х^2+x^2=(2 корня из 3)^2
2x^2=4*3 x^2=12/2 x= корень из 6  
Радиус шара равен корень из 6 = \sqrt{6}
marketing3

1)Это прямоугольные треугольники,с любыми сторонами, но прямоугольные.

2)Площадь прямоугольника равна произведению его смежных сторон, или произведению длины на ширину.

3) 1.Равные многоугольники имеют равные площади  

   2.Если многоугольник составлен из нескольких многоугольников, то   его площадь равна сумме площадей этих многоугольников .  

  3.Площадь квадрата равна квадрату его стороны

4)Площадь параллелограмма равна произведению длины одной из его сторон на высоту, опущенную на эту сторону Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними Площадь параллелограмма равна половине произведения его диагоналей на синус угла между ними.

5)Много вариантов есть, так как площадь многоугольников может и делиться, и уменьшаться, и увеличиваться.

6)Площадь треугольника равна половине произведения его сторон на синус угла между ними.

7)Площадь прямоугольного треугольника равняется половине произведения катетов. Дан прямоугольный треугольник с катетами a = 8 см, b = 6 см. Также в прямоугольном треугольнике применяется теорема Пифагора. – сумма квадратов двух катетов равняется квадрату гипотенузы.

8)Площадь трапеции равна произведению полусуммы оснований на высоту. Доказательство. Проведя в трапеции ABCD (рис.1) диагональ DB, можно рассматривать ее площадь S как сумму площадей двух треугольников BCD и ADB.

9)Если угол одного треугольника равен углу другого треугольника, то отношение площадей этих треугольников равно отношению произведений сторон, заключающих равные углы.

10)Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов.

11)Отношение площадей треугольников, имеющих равную высоту, равно отношению их оснований.

12)Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный.

13)1. Площадь ромба равна произведению стороны на высоту, проведенную к этой стороне (S=ah)

2. Если известна сторона ромба (у ромба все стороны равны) и угол между сторонами, то площадь можно найти по следующей формуле(S=a2 sin a)

3. Площадь ромба также равна полупроизведению диагоналей

4. Если известен радиус r окружности, вписанной в ромб  и сторона ромба a, то его площадь вычисляется по формуле.

14)Площадь прямоугольного треугольника равняется половине произведения катетов. Дан прямоугольный треугольник с катетами a = 8 см, b = 6 см. Также в прямоугольном треугольнике применяется теорема Пифагора. – сумма квадратов двух катетов равняется квадрату гипотенузы.

15)Если высоты двух треугольников равны, то их площади относятся как основания. И Если высоты двух треугольников равны, то их площади относятся как основания

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Точка o— центр вписанной окружности треугольника abc, a1, b1, c1 — точки её касания со сторонами bc, ac, ab соответственно. прямые ao, bo, c1o пересекают прямую a1b1 в точках k, l, m соответственно. докажите, что ∠lc1m=∠kc1m.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

oaved2018
baranovaas
SitnikovYurii5
Николаевна_Анна670
Dodkhobekovich1683
Dmitrievich1871
Olesya
djevgen
Татьяна Гришаевич
Tane4ka2110
karavan85450
Pastushenkoen
bestform
Olenkalebedeva4477
Sergeevna803