Проведем высоту BG на сторону AC и высоту DR на сторону AB.
Из суммы углов Δ ABC
∠ABC = 180° -45°-30° =105°
Тогда ∠DBR = 105°-75°=30°
Из суммы углов Δ BGC
∠CBG =90°-45°=45°
Откуда
∠DBG = 75°-45°=30°
Поскольку ∠DAB=∠DBA=30°
Δ DAB - равнобедренный
Но тогда высота DR является медианой , то есть
AR=RB=x
AD= 18-BA= 18-2x
В прямоугольном Δ ARD катет DR лежит напротив угла в 30° , а значит равен половине гипотенузы AD= 18-2x
DR= (18-2x)/2 = 9-x
Прямоугольный Δ RBD равен прямоугольному Δ GBD по общей гипотенузе BD и равным острым углам ∠RBD=∠GBD=30°
Отсюда следует что
DG=DR=9-x
BG=BR=x
ΔGBC - прямоугольный равнобедренный , тк ∠GCB=∠GBC=45°
Таким образом
BG=GC=x
CD= DG +GC = 9-x +x =9
ответ :9
vnolenev
22.05.2022
Дано:
∆ ABC,
AC=BC,
CF — биссектриса.
Доказать: CF — медиана и высота.
Доказательство:
Рассмотрим треугольники ACF и BCF. 1) AC=BC (по условию (как боковые стороны равнобедренного треугольника)) 2) ∠ACF=∠BCF (так как CF — биссектриса по условию). 3) сторона CF — общая. Значит, ∆ ACF=∆ BCF (по двум сторонам и углу между ними). Из равенства треугольников следует равенство соответствующих сторон и углов. Таким образом, AF=BF, следовательно, CF — медиана. ∠AFC=∠BFC. А так как эти углы — смежные, значит, они прямые: ∠AFC=∠BFC=90º. Значит, CF — высота. Что и требовалось доказать.
anna241273
22.05.2022
4см, 10 см -- основания трапеции. (Диагональ разбивает трапецию на 2 треугольника, их средние линии 2 и 5см, значит их основания, а они являются трапеции равны 4 и 10 см). В трапеции опустим высоты из вершин тупых углов. Они разбивают большее основание на отрезки 3, 4, 3 см. Высоты, опущенные из вершин тупых углов разбивают трапецию на 2 равных прямоугольных треугольника и прямоугольник. Гипотенуза прямоугольного треугольника равна 6, катет 3,значит , угол образованный высотой и боковой стороной 30 градусов, значит угол при большем основании 60 градусов, а тупые углы по 120 градусов
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
На стороне ac треугольника abc выбрана точка d. известно, что ∠bac=30∘, ∠dbc=75∘, ∠bca=45∘. найдите cd, если известно, что ba+ad=18
ответ: 9
Объяснение:
Проведем высоту BG на сторону AC и высоту DR на сторону AB.
Из суммы углов Δ ABC
∠ABC = 180° -45°-30° =105°
Тогда ∠DBR = 105°-75°=30°
Из суммы углов Δ BGC
∠CBG =90°-45°=45°
Откуда
∠DBG = 75°-45°=30°
Поскольку ∠DAB=∠DBA=30°
Δ DAB - равнобедренный
Но тогда высота DR является медианой , то есть
AR=RB=x
AD= 18-BA= 18-2x
В прямоугольном Δ ARD катет DR лежит напротив угла в 30° , а значит равен половине гипотенузы AD= 18-2x
DR= (18-2x)/2 = 9-x
Прямоугольный Δ RBD равен прямоугольному Δ GBD по общей гипотенузе BD и равным острым углам ∠RBD=∠GBD=30°
Отсюда следует что
DG=DR=9-x
BG=BR=x
ΔGBC - прямоугольный равнобедренный , тк ∠GCB=∠GBC=45°
Таким образом
BG=GC=x
CD= DG +GC = 9-x +x =9
ответ :9