Андрей628
?>

Даны точки а(5; -8; -1), в(6; -8; -2), с(7; -5; -11), д(7; -7; -9найдите угол между векторами ав и сд

Геометрия

Ответы

Yelena Dilyara

russian.

тригонометрические функции острого угла в прямоугольном треугольнике. sin, cos, tg, ctg

итак, у каждого прямоугольного треугольника есть два острых угла. для каждого из них можно найти синус, косинус, тангенс и котангенс. здесь главное не перепутать, что к чему относится.

синус острого угла пр. треугольника - это отношение (деление) противолежащего этому углу катета к гипотенузе.

косинус острого угла пр. треугольника - это отношение (деление) прилегающего к этому углу катета   к гипотенузе.

тангенс острого угла пр. треугольника - это отношение противолежащего этому углу катета к прилегающему катету.

котангенс - это наоборот, отношение прилегающего к этому углу катета к противолежащему.

во вложении есть рисунок, там все показано. легче это понять словами, а не на рисунке (лично для меня).

также существует таблица значений синуса, косинуса, тангенса и котангенса для некоторых углов (30°, 45°, 60°, 90°), тоже во вложении. таблицу нужно выучить обязательно.

ukrainian.

тригонометричні функції гострого кута прямокутного трикутника. sin, cos, tg, ctg.

у кожному прямокутному трикутнику є два гострих кута. для кожного з них можна знайти синус, косинус, тангенс та котангенс.

синус гострого кута пр. трикутника - це відношення (ділення) протилежного цьому куту катета до гіпотенузи.

косинус гострого кута пр. трикутника - це, відношення прилеглого цьому куту катета до гіпотенузи.

тангенс гострого кута пр. трикутника - це відношення протилежного цьому куту катета до прилеглого.

котангенс - це, навпаки, відношення прилеглого до цього кута катета до протилежного.

також існує таблиця значень синуса(sin), косинуса (cos), тангенса(tg) та котангенса (ctg) для деяких кутів (30°, 45°, 60°, 90°). таблицю потрібно вивчити.

таблицу можно легко выучить по принципу, данному на сайте

Олимов Протопопова
Задание 1. В правильной пирамиде площадь основания составляет 1/3 площади полной поверхности. Найти двугранный угол при основании пирамиды. 

Примем длину стороны a основания за 1, периметр Р = 3а = 3.
Тогда площадь основания So = a²√3/4 = √3/4.
Площадь полной поверхности S =3So = 3√3/4.
Площадь боковой поверхности равна:
 Sбок = S - So = (3√3/4) - (√3/4) = 2√3/4 = √3/2.
А так как Sбок = (1/2)РА, то апофема А равна:
 А = 2Sбок/P = 2*(√3/2)/3 = √3/3.
Высота основания h = a*cos30° = 1*(√3/2) = √3/2.
Проекция апофемы на основание в правильной треугольной пирамиде равна (1/3)h = √3/6.
Двугранный угол между боковой гранью и основанием равен плоскому углу α между апофемой и её проекцией на основание.
cos α = ((1/3)h/A) = (√3/6)/(√3/3) = 3/6 = 1/2.
α = arc cos(1/2) = 60°.

Задание 2. В правильной четырехугольной пирамиде боковое ребро образует со стороной основания угол β. Отрезок, который соединяет центр вписанной в боковую грань окружности с вершиной основания этой грани, равен 1. Определить боковую поверхность пирамиды.

Заданный отрезок длиной 1 - это часть биссектрисы угла боковой грани при основании от вершины до пересечения с апофемой.
Сторона а основания равна:
а = 2*1*cos(β/2) = 2cos(β/2). Периметр основания Р = 4а = 8cos(β/2).
Апофема А равна:
А = (а/2)*tgβ = cos(β/2)*tgβ.
Тогда Sбок = (1/2)РА = (1/2)*(8cos(β/2))*(cos(β/2)*tgβ) = 4cos²(β/2)*tgβ
(можно заменить функцию половинного угла на целого, но формула получится более громоздкая).

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Даны точки а(5; -8; -1), в(6; -8; -2), с(7; -5; -11), д(7; -7; -9найдите угол между векторами ав и сд
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Irina
ckiras9
banketvoshod
Коваль1974
Мария591
FATAHOVAMAINA
websorokin
Dmitrievich1871
ALLA1868
whitecatrussia5398
Елена Ирина
Kolosove5465
Николаевич1033
frsergeysavenok
mahalama7359