Если две параллельные плоскости пересечены третьей, то линии пересечения параллельны.
Пересекающиеся прямые А₁В₁ и А₂В₂ задают плоскость, которая пересекает плоскости α и β по прямым А₁А₂ и В₁В₂, значит
А₁А₂ ║ В₁В₂.
Тогда ∠МВ₁В₂ = ∠МА₁А₂ как накрест лежащие при пересечении параллельных прямых А₁А₂ и В₁В₂ секущей А₁В₁,
∠В₁МВ₂ = ∠А₁МА₂ как вертикальные, значит
ΔВ₁МВ₂ подобен ΔА₁МА₂ по двум углам.
МВ₂ = А₂В₂ - МА₂ = 10 - 4 = 6 см
Пусть А₁А₂ = х, тогда В₁В₂ = х + 1,
6x = 4(x + 1)
6x = 4x + 4
2x = 4
x = 2
А₁А₂ = 2 см
demochkoo
16.09.2020
1 площадь равна половине произведения катетов 20 ·15:2=150 2 площадь параллелограмма равна произведению основания на высоту поэтому площадь делим на сторону и получаем высоту 30:6=5 30:10=3 ответ 5 и 3 3. если мы раздвинем диагонали трапеции то получим прямоугольный треугольник, равновеликий трапеции площадь треугольника равна 4·10:2 =20 ответ 20 4 площадь ромба равна половине произведения его диагоналей 8·12:2=48 ответ 48 5 диагональ по теореме Пифагора √(10²+14²=√296=2√74 площадь равна10·14=140
Здесь все просто, единствення задача про трапецию - если нужен чертеж и обоснование напишите
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Вычислите |a+b|, если известно, что |a|=|b|=1, угол(а
А₁А₂ = 2 см
Объяснение:
Если две параллельные плоскости пересечены третьей, то линии пересечения параллельны.
Пересекающиеся прямые А₁В₁ и А₂В₂ задают плоскость, которая пересекает плоскости α и β по прямым А₁А₂ и В₁В₂, значит
А₁А₂ ║ В₁В₂.
Тогда ∠МВ₁В₂ = ∠МА₁А₂ как накрест лежащие при пересечении параллельных прямых А₁А₂ и В₁В₂ секущей А₁В₁,
∠В₁МВ₂ = ∠А₁МА₂ как вертикальные, значит
ΔВ₁МВ₂ подобен ΔА₁МА₂ по двум углам.
МВ₂ = А₂В₂ - МА₂ = 10 - 4 = 6 см
Пусть А₁А₂ = х, тогда В₁В₂ = х + 1,
6x = 4(x + 1)
6x = 4x + 4
2x = 4
x = 2
А₁А₂ = 2 см