Для того что бы вычислить радиус круга необходимо знать его длину или площадь. Если нам известа одна из указаннх величин, для нас не составит труда вычислить радиус круга.
Радиус круга рассчитывается по следующим формулам:
Если нам известна длина:
Формула для расчета радиуса круга через его длину:
R=P/(2π)
Вычислить радиус круга через его длину
Если нам известна площадь:
Формула для расчета радиус круга через площадь:
R=√S/π
Вычислить радиус круга через площадь
Если нам известен диаметр:
Формула для расчета радиус круга через диаметр:
R=D/2
Вычислить радиус круга через диаметр
Где R - радиус круга, S – площадь круга, P – длина круга, D - диаметр, π – число Пи которое всегда примерно равно 3,14.
Объяснение:
И ещё.
Как вычислить площадь ( S ) круга, зная только его диаметр (D)
Например, диаметр круга = 10 сантиметров.
То радиус ( R ). естественно будет равен 5 см. ( половину диаметра )
Есть " пи " = 3,14 - это математическая постоянная, выражающая отношение окружности к длине её диаметра.
Есть формула определения площади круга ( S ):
S круга = пи х R в квадрате.
Подставляем данные в формулу:
S круга = 3,14 х ( 5 х 5 ) = 3,14 х 25 см = 78,5 квадратных см.
Поделитесь своими знаниями, ответьте на вопрос:
Решите задачу по геометрии 10 класс. Две взаимно перпендикулярные плоскости пересекаются по прямой MN. Прямая a принадлежит одной плоскости и параллельна и MN. Расстояние от a до MN равно 45 см, a от b до MN равно 60 см. Найти расстояние между прямыми a и b. Решите данную задачу с пояснением ответ мне не нужен и желательно сделайте чертёж.
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании,
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника,
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.