Дано:
АВСД- пар-м.
ВК- биссектриса угла В
АК - АД = 1 см
Р(периметр) = 40 см.
Найти:
Стороны пар-ма
1) Рассмотрим треугольник АВК - он равнобедренный (по свойству о биссектрисе, проведённой в параллелограмме)
в нём:
АК = АВ (т.к боковые стороны)
2) Пусть КД - Х см. , тогда АК - Х=1 , а т.к АК = АВ (по выше доказанному), следовательно АВ - тоже Х+1, а т.к в параллелограмме все стороны попарено параллельны, то ВС - 2Х+1, а СД - Х +1, а т.к сумма всех сторон равна 40 см. (по условию), то составим уравнение:
Х + Х + 1 + Х + 1 + 2Х + 1 + Х + 1 = 40
Дальь ше решаешь уравнение и находишь оставшиеся стороны алгебрачиски. Всё, и ответ будет готов.
Поделитесь своими знаниями, ответьте на вопрос:
Задание 1. Точки M и N являются серединами сторон AB и BC треугольника ABC, сторона AB равна 20, сторона BC равна 58, сторона AC равна 64. Найдите MN. * Задание2. В треугольнике ABC точки M, N, K – середины сторон AB, BC, AC. Найти периметр треугольника ABC, если MN=12, MK=10, KN=8. * Задание 3. Периметр равностороннего треугольника АВС равен 24 см. Найдите длину средней линии этого треугольника. * Задание 4. Стороны треугольника равны 2 см, 3 см и 4 см. Его вершины являются серединами сторон второго треугольника. Найдите периметр второго треугольника. * Задание 5. Средняя линия равнобедренного треугольника, параллельная основанию, равна 3 см. Найдите стороны треугольника, если его периметр равен 16 см
Дано:
АВСД- пар-м.
ВК- биссектриса угла В
АК - АД = 1 см
Р(периметр) = 40 см.
Найти:
Стороны пар-ма
1) Рассмотрим треугольник АВК - он равнобедренный (по свойству о биссектрисе, проведённой в параллелограмме)
в нём:
АК = АВ (т.к боковые стороны)
2) Пусть КД - Х см. , тогда АК - Х=1 , а т.к АК = АВ (по выше доказанному), следовательно АВ - тоже Х+1, а т.к в параллелограмме все стороны попарено параллельны, то ВС - 2Х+1, а СД - Х +1, а т.к сумма всех сторон равна 40 см. (по условию), то составим уравнение:
Х + Х + 1 + Х + 1 + 2Х + 1 + Х + 1 = 40
Дальь ше решаешь уравнение и находишь оставшиеся стороны алгебрачиски. Всё, и ответ будет готов.