АС - основание, значит угол С лежит при основании. В равнобедренном треугольнике углы при основании равны. Сумма углов треугольника равна 180 градусов. Внешний угол треугольника равен сумме двух углов треугольник, несмежных с ним. Т. к. внешний угол при вершине С - смежный с углом С, их сумма равна 180 градусов. Угол С равен 180-120=60 градусов. Угол А = угол С (углы при основании равнобедренного треугольника) = 60 градусов. Угол В равен 180-(60+60)=60 градусов. Т. к. все углы треугольника равны 60, треугольник равносторонний. В равностороннем треугольнике все стороны равны, следовательно, все стороны в треугольнике АВС равны 42 см (АВ=ВС=АС=42 см).
innaglobal21
20.02.2022
Основание пирамиды-прямоугольник с углом между диагоналями 120° градусов. Все боковые ребра пирамиды равны 3√2 см и наклонены к плоскости основания под углом 45°. Найдите объем пирамиды.
Боковые ребра пирамиды равны и наклонены к плоскости основания под углом 45°, следовательно, проекции ребер на плоскость основания также равны между собой и равны половинам диагоналей основания, а треугольник, образованный высотой SO пирамиды, половиной OC диагонали и боковым ребром SC - прямоугольный равнобедренный. Отсюда высота SO пирамиды также равна половине диагонали. По т. Пифагора или формулы равнобедренного прямоугольного треугольника с=a√2 высота SO пирамиды и половина диагонали основания равны 3 см. Основание пирамиды - прямоугольник с углом между диагоналями 120° градусов, значит, второй угол между ними 60°. Меньшая сторона прямоугольника образует с половинами диагоналей равносторонний треугольник, ⇒ меньшая сторона основания также равна 3 см Диагональ основания равна 3*2=6 см Большая сторона основания - катет, противолежащий углу 60° и равна 6*sin(60°)= 3√3 см Объем пирамиды равен произведению площади основания на высоту, деленную на 3: V=Sh:3 V=3*(3√3)*3:3=9√3 см³
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дан равносторонний треугольник abc k принадлежит bc, доказать что ак меньше аб