Правильная усеченная пирамида АВСДА1В1С1Д1, нижнее основание квадрат АВСД со стороной=10, верхнее-А1В1С1Д1 со стороной =6, в квадрате диагонали пересекаются под уголом 90, В1Д1 перпендикулярна А1С1, плоскость АА1С1С-плоскость сечения площадью 6*корень2, АА1С1С-равнобокая трапеция , А1С1=корень(2*А1Д1 в квадрате)=корень(2*36)=6*корень2, АС=корень(2*АД в квадрате)=корень(2*100)=2*корень10, площадь АА1С1С=1/2*(А1С1+АС)*АН, АН высота трапеции на АС=высота призмы, 6*корень2=1/2*(6*корень2+10*корень2)*АН, 12*корень2=16*корень2*АН, АН=12/16=3/4 объем=1/3*АН*(площадьАВСД+площадьА1В1С1Д1+корень(площадьАВСД*площадьА1В1С1Д1)=1/3*(3/4)*(10*10+6*6+корень(100*36))=1/4*(136+60)=49
ziyaevak
07.05.2020
Трапеция ABCD AB=CD ∠ABD=90° ---
Опустим высоту BH к основанию AD. BH ⊥ AD
Высота равнобедренной трапеции (BH), опущенная на большее основание (AD), делит его на больший отрезок (HD), который равен полусумме оснований, и меньшый (AH), который равен полуразности оснований. AH = (AD-BC)/2
Катет (AB) прямоугольного треугольника (△ABD) есть среднее геометрическое между гипотенузой (AD) и проекцией этого катета на гипотенузу (AH). AB = √(AD·AH)
АА1С1С-равнобокая трапеция , А1С1=корень(2*А1Д1 в квадрате)=корень(2*36)=6*корень2, АС=корень(2*АД в квадрате)=корень(2*100)=2*корень10,
площадь АА1С1С=1/2*(А1С1+АС)*АН, АН высота трапеции на АС=высота призмы,
6*корень2=1/2*(6*корень2+10*корень2)*АН, 12*корень2=16*корень2*АН, АН=12/16=3/4
объем=1/3*АН*(площадьАВСД+площадьА1В1С1Д1+корень(площадьАВСД*площадьА1В1С1Д1)=1/3*(3/4)*(10*10+6*6+корень(100*36))=1/4*(136+60)=49