Станиславович1830
?>

Дано: треугольник АВС, угол С равен 90°, угол А равен 37°.Найти угол В​

Геометрия

Ответы

vadimkayunusov

53 градуса

Объяснение:

Сумма углов в треугольнике равна 180 градусов. Следовательно угол В = 180-90-37=53 градуса

Aleksei1463

1-ый признак равенства треугольников: по двум сторонам и углу между ними (Теорема 3.1. – Признак равенства треугольников по двум сторонам и углу между ними - Если две стороны и угло между ними одного треугольнгрка равны соотвественно двум сторонам и углу между ними другого треугольника, то такие треугольники равны)

Доказательство:

Пусть у треугольников АВС и А1В1С1 угол А равен углу А1, АВ равно А1В1, АС равно А1С1, докажем, что треугольники равны.

Пусть А1В2С2 – треугольник, равный АВС, с вершины В2 на луче А1В1 и вершины С2 в той же полуплоскости относительно прямой А1В1, где лежит вершина С1.

Так как А1В1 равно А1В2, то вершина В2 совпадет с В1. Так как угол В1А1С1 равен углу В2А1С2, то луч А1С2 совпадет с А1С1. Так как А1С1 равен А1С2, то С2 совпадет с С1. Значит треугольник А1В1С1 совпадает стреугольниом А1В2С2, значит равен треугльнику АВС.

Теорема доказана.

2-ой признак равенства треугольников: по стороне и прилежим к ней углам (Теорема 3.2. - Признак равенства треугольников по стороне и прилежащим к ней углам - Если сторона и прилежащие у ней углы одного треугольника равны соотвественно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны)

Доказательство:

Пусть АВС и А1В1С1 – два треугольника, у которых АВ равно А1В1, угол А равен углу А1, и угол В равен углу В1. Докажем, что они равны.

Пусть А1В2С2 – треугольник, равный АВС, с вершины В2 на луче А1В1 и вершины С2 в той же полуплоскости относительно прямой А1В1, где лежит вершина С1.

Так как А1В2 равно А1В1, то вершина В2 совпадет с В1. Так как угол В1А1С2 равен углу В1А1С1, и угол А1В1С2 равен углу А1В1С1, то луч А1С2 совпадет с А1С1, а В1С2 совпадет с В1С1. Отсюда следует, что вершина С2 совпадет с С1. Значит треугольник А1В1С1 совпадает стреугольниом А1В2С2, значит равен треугльнику АВС.

Теорема доказана.

3-ий признак равенства треугольников: по трем сторонам ( Теорема 3.6. - Признак равенства треугольников по трем сторонам - Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны)

Доказательство:

Пусть АВС и А1В1С1 – два треугольника, у которых АВ равно А1В1, АС равно А1С1, и ВС равно В1С1. Докажем, что они равны.

Допустим, треугольники не равны. Тогда у них угол А не равен углу А1, угол В не равен углу В1, и угол С не равен углу С1. Иначе они были бы равны, по перовому признаку.

Пусть А1В1С2 – треугольник, равный треугольнику АВС, у которого Свершина С2 лежит в одной полуплоскости с вершиной С1 относительно прямой А1В1.

Пусть D – середина отрезка С1С2. Треугольники А1С1С2 и В1С1С2 – равнобедренные с общим основанием С1С2. Поэтому их медианы А1D и В1D – являются высотами, значит прямые А1D и В1D – перпендикулярны прямой С1С2. Прямые А1D и В1D не совпадают, так как точки А1, В1, D не лежат на одной прямой, но через точку D прямой С1С2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию.

VSpivak3122

Задача 6

В ΔАВС , АВ=ВС, АЕ -биссектриса, Е∈ВС. Найти Р( АВС), если ВС-АС=8 и ВЕ:ЕС=3:2.

Решение.

Пусть одна часть х. Тогда ВЕ=3х, ЕС=2х ⇒ ВС=5х ⇒ АВ=5х , т.к треугольник равнобедренный.

По т. о биссектрисе треугольника  \frac{AB}{BE} =\frac{AC}{CE}  , тогда \frac{5x}{3x} =\frac{AC}{2x} ⇒ AC=\frac{10}{3}x .

По условию  ВС-АС=8 , поэтому 5х-\frac{10}{3}x = 8  или  \frac{5}{3}x =8  или х=4,8.

ВС=5*4,8=24 , АВ=24 , АС=\frac{10}{3}*\frac{24}{5} =16.

Р=24+24+16=64.

Задача 8

Стороны треугольника относятся как 2:3:3 . Найти периметр треугольника , если основание на 5 единиц меньше боковой стороны.

Решение .

Дан ΔАВС. АВ=ВС . Пусть одна часть х. Тогда АВ=ВС=3х, АС=2х .

По условию АС меньше АВ на 5, т.е  АВ-АС=5.

Получим 3х-2х=5 или х=5  . Тогда АВ=ВС=3*5=15, АС=2*5=10 .

Р=15+15+10=40.

Задача 9

Угол при вершине равнобедренного треугольника равен 120°. , высота , опущенная на основание,  равна 6 .Найти периметр треугольника .

Решение .

Дан ΔАВС , АВ=ВС  ,ВН⊥АС , ∠АВС=120°.

1) Высота равнобедренного треугольника является биссектрисой ⇒∠АВН=60° .

2) ΔАВН -прямоугольный , по свойству углов ∠А=90°-60°=30°.

Против угла в 30° , лежит катет равный половине гипотенузы , т.е ВН=1/2*АВ ⇒ АВ=12 ⇒ВС=12, т.к треугольник равнобедренный.

По т. Пифагора АН²=АВ²-ВН² или АН²=12²-6²  или АН=√18*6=6√3.

3) Высота равнобедренного ΔАВС является медианой, значит  АН=НС=6√3  ⇒АС =12√3.

4)Р=12√3+12+12=24+12√3.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Дано: треугольник АВС, угол С равен 90°, угол А равен 37°.Найти угол В​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

aaazovcev
Елена_Кошевой
aivia29
Gstoremsk62
Tkachenko1050
Сергеевна
podenkovaev314
oksanamalakhova004610
Бочкарева Горохова1652
shabaev19542355
ea9824165833886
Varvara
kuliba
zimin0082
Olybetezina1973