Правильная треугольная призма ABCA₁B₁C₁ ⇒ в основании лежит равносторонний треугольник, а боковые ребра перпендикулярны основаниям.
Прямые ВС и А₁С₁ - скрещивающиеся. Расстояние между скрещивающимися прямыми измеряется по их общему перпендикуляру. Так как ВС⊥СС₁ и А₁С₁⊥СС₁ ⇒ СС₁=16 см ⇒
АА₁=ВВ₁=СС₁= 16 см
ВК : КВ₁ = 3:5 ⇒ 3x+5x=16 ⇒ x=2
BK = 6 см; KB₁ = 10 см
Проведём BM⊥AC. BM - высота и медиана равностороннего ΔАВС. AM = MC
см
ΔABK=ΔCBK - равны по по двум катетам ⇒ AK=KC ⇒
ΔAKC - равнобедренный, AM=MC ⇒ KM⊥AC
KM⊥AC и BM⊥AC ⇒ ∠KMB - линейный угол двугранного угла между плоскостями ABC и AKC.
ΔKMB - прямоугольный, ВK = 6 см, ВМ = 12 см
tg ∠KMB = KB/BM = 6/12 = 0,5
ответ: 0,5
В равнобедренном треугольнике ABC рассмотрим два треугольника KAC и MCA. Треугольник KAC равен треугольнику MCA по двум сторонам и углу между ними, а именно:
1). Сторона AC - общая;
2). MA=KC, так как:
AB=BC, ведь треугольник ABC - равнобедренный, а MA=1/2*AB (т. M - середина AB, т.к. MC - медиана), KC=1/2*BC (т. K - середина BC, т.к. KA - медиана), значит MA=KC;
3). ∠BAC=∠BCA, т.к. треугольник ABC - равнобедренный.
Из равенства треугольников KAC и MCA следует равенство соответственных элементов, а значит ∠KAC=∠MCA, что и требовалось доказать.
Поделитесь своими знаниями, ответьте на вопрос:
Из центра окружности о к хорде ав, проведен перпендикуляр ос. найдите длину хорды, если ос=6 см, угол ова=45 градусов
Если угол ОВА=45 градусов, то и угол СОВ=45 градусов, а СВ=ОС=6 см.
АВ=2ОС=2*6=12 см.
ответ: 12 см.