" Основой прямой призмы является равнобедренный треугольник с углом a при основании и радиусом вписанной окружности r. Диагональ боковой грани, проходящей через основание равнобедренного треугольника, наклонена к плоскости основания под углом y . Отметьте, какие из приведенных четырех утверждений правильные
1. Плоскость, проходящая через боковое ребро призмы и уентр круга, вписанного в основание, делит двугранный угол при боковом ребре призмы пополам
2. Боковое ребро призмы равна 2r*ctg*a/2*tgy
3. Одна из сторон основания призмы равна r*ctg*a/2
4. Один из двугранных углов при боковом ребре призмы равна a"
Объяснение:
1) Т.к. центр вписанной окружности лежит в точке пересечения биссектрис, то плоскостью, проходящей через боковое ребро призмы и центр круга, вписанного в основание, будет плоскость АКК₁А₁ , где АК, А₁К₁-биссектрисы нижнего и верхнего оснований.
Поэтому 1 утверждение верное.
2) Боковое ребро найдем из ΔАСС₁ -прямоугольного : СС₁=АС*tgy.
АС найдем из ΔАОН :
ΔАВС-равнобедренный. В равнобедренном
треугольнике биссектриса ВН является высотой и
медианой .АК-биссектриса, значит ∠ОАН=α/2 .
АН= r /(tgα/2 ) , 2АН=АС= =2r*ctg α/2 .
Получаем СС₁=2r*ctg α/2 *tgy.
Поэтому 2 утверждение верное.
3) 3 утверждение неверное , т.к. в п 2 найдена сторона основания АС=2r*ctg α/2 . а боковая сторона будет искаться через косинус или синус ΔАВН.
4)4 утверждение верное . Это двугранный угол , например САА₁В, т.к
АА₁⊥АС и АА₁⊥АВ и ∠ВАС=α
1 ЗАДАЧА:
Скорость 1-го х .. Через 5 часов остался путь 176-5х .. Время в пути (176-5х)/х
Скорость 2-го х+5 Проезжает путь 176 . _ _Время в пути 176/(х+5)
176-5х = 176
_х _..___х+5
(176-5х)(х+5) = 176х
176х - 5х2 + 176 ∙ 5 - 25х = 176х
5х2 + 25х - 176 ∙ 5 = 0 Делим на 5
х2 + 5х - 176 = 0
D = 52 - 4 ∙ 1 ∙ (-176) = 25 + 704 = 729 = 272
x1 = (-5-27)/2 < 0 не удовлетворяет условию задачи, количество деталей не может быть отрицательным
x2 = (-5+27)/2 = 22/2 = 11
Скорость второго на 5 больше
11+5 = 16
2 ЗАДАЧА:
Первый в час делает х+4 деталей 33 деталей сделает за 33/(х+4) часов
Второй в час делает х деталей 77 деталей делает за 77/х
Разность 77/х - 33/(х+4) = 8
77 ___- __33__=_8
х _.___.__.х+4
77(х+4) - 33х = 8х(х+4)
77х + 308 - 33х = 8х2 + 32х
8х2 + 32х - 77х + 33х - 308 = 0
8х2 - 12х - 308 = 0 Разделим на 4
2х2 - 3х - 77 = 0
D = 32 - 4∙ 2 ∙(- 77) = 9 + 616 = 625 = 252
x1 = (3-25)/4 < 0 не удовлетворяет условию задачи, количество деталей не может быть отрицательным
x2 = (3+25)/4 = 28/4 = 7
3 ЗАДАЧА:
Пусть знаменатель равен х, тогда числитель равен х-4.
Если к числителю прибавить 19, то получим выражение х-4+19=х+15, а знаменатель будет х+28.
Дробь (х+15)/(х+28)больше прежней на 1/5.
Составляем уравнение: (х-4)/х+1/5=(х+15)/(х+28).
Приведем все к общему знаменателю и перенесем в одну сторону, у х-20+х)/(5х)=(х+15)/(х+28);
(6х-20)(х+28)=5х(х+15)
6х^2-5х^2-20х+168х-75х-560=0
Получим уравненеие х^2+73х-560=0. Решим и получим х1=-80 (посторонний корень, т.к знаменатель не может быть отрицательным числом) и х2=7.
Эта дробь (7-4)/7=3/7.
проверка: (3+19)/(7+28)-3/7=(22-15)/35=7/35=1/5
Объяснение:Как то так
Поделитесь своими знаниями, ответьте на вопрос:
Периметр треугольника CAB равен 195 дм а одна из его сторон равно 65 вычисли две другие стороны треугольника если их разность равна 26дм
Дано:
ΔАВС;
АС=65 дм;
СВ-АВ=26 дм
Р=195 дм;
Найти:
АВ и СВ.
Пусть АВ = х дм
СВ-АВ=26
СВ=АВ+26
тогда сторона СВ = (х+26) дм
Периметр - сумма всех сторон:
65+х+х+26=195
2х=104
х=52 (дм) - сторона АВ;
52+26=78 (дм) - сторона СВ;
ответ: две другие стороны треугольника 52 дм и 78 дм.