1) ВС=AD+CD=20 (см)
∆ АВС равнобедренный, АВ=ВС=20 (см)
∆ АВD- прямоугольный
AD=√(AB²-BD²)=√144=12 (см)
Из ∆ АDC гипотенуза АС=√(AD²+CD²)=√160=4√10 см
S (ABC)=AD•BC:2=12•20:2=120 см²
* * *
2) Примем меньший катет равным х, тогда гипотенуза 2х.
По т.Пифагора (2х)²-х*=36 ⇒ х=√12=2√3 м – это ответ.
* * *
3) Ромб - параллелограмм с равными сторонами, его диагонали взаимно перпендикулярны. Отрезок, перпендикулярный противоположным сторонам параллелограмма равен его высоте.
МК параллелен и равен высоте ромба ВН.
Точка О делит диагонали пополам, а сам ромб - на 4 равных прямоугольных треугольника.
АО=АС:2=32:2=16 .
ВО=ВD:2=12
Из ∆ АОВ по т.Пифагора АВ=√(АО²+ВО²)=√ 400=20
а) Площадь ромба равна половине произведения его диагоналей.
S=AC•BC:2=32•24:2=384
б) Площадь ромба равна произведению высоты на его сторону.
S=a•h – h=S:a
h=384:20=19,2
Поделитесь своими знаниями, ответьте на вопрос:
Диагонали ромба ABCD пересекаются в точке О Найдите площадь ромба если A B равно B равен 8 см BO равен 7 см
5 см
Объяснение:
1. Периметр треугольника АВД = АВ + ВД + АД = 30 см.
2. Периметр треугольника АВС = АВ + ВС + АС = 50 см.
3. АВ = ВС как боковые стороны равнобедренного треугольника.
4. АД = СД, так как высота ВД являясь ещё и медианой, делит АС пополам.
5. АД + СД = АС. АС = 2АД.
6. Подставляем АВ вместо ВС, 2АД вместо АС во вторую формулу:
2АВ + 2АД = 50 см. Делим это выражение на 2:
АВ + АД = 25 см. Подставляем значение этого выражения в первую формулу:
25 + ВД = 30 см.
ВД = 30 - 25 = 5 см.
ответ: ВД = 5 см.