ответ: 1:4 и 1:3
Объяснение: Обозначим вершины параллелограмма АВСD , начиная с левого нижнего по часовой стрелке.
Обозначим точки пересечения прямой со сторонами AD - T , ВС -Р
Обозначим точки пересечения диагонали АС с прямой РТ -М, а диагонали BD с прямой РТ -К.
Тогда по условию задачи АМ:МС=1:3
ВК:КD=1:2
Заметим, что ∡РТА= ∡ТРС и ∡ТАС = ∡РСА ( накрест лежащие при параллельных прямых AD и ВС)
=>ΔAMT ≅ ΔCMP ( подобны по 2-м углам)
Тогда АМ/CM=AT/PC => AT/PC=1/3 (1)
Аналогично ΔTKD ≅ ΔPKB ( подобны по 2-м углам)
TD/BP=KD/KB=2 (2)
Пусть АТ=х . Тогда РС=3*х
Пусть AD=BC=y. Тогда (2) можно записать так :
(у-х)/(y-3*x)=2
y-x=2*y-6*x
y-5*x=0
Поделим обе части уравнения на у:
1-5 * (х/y)=0
5*(x/y)=1
x/y=1/5 => AT/TD=1:4
=> PC/BC=3x/y=3/4
=> BP:PC=1:3
Поделитесь своими знаниями, ответьте на вопрос:
2. На малюнку B=C=90°; BAD=58°; CAD=32° Довести, що ABD=ADC
Решение можно найти двумя
Решение можно найти двумя Проекция боковой грани на основание для правильного тетраэдра равна 1/3 площади основания:
Решение можно найти двумя Проекция боковой грани на основание для правильного тетраэдра равна 1/3 площади основания:So(б.гр) = (1/3)So = 1/3)(a²√3/4) = (a²√3/12) = (8²√3)/12 = (64√3)/12 =
Решение можно найти двумя Проекция боковой грани на основание для правильного тетраэдра равна 1/3 площади основания:So(б.гр) = (1/3)So = 1/3)(a²√3/4) = (a²√3/12) = (8²√3)/12 = (64√3)/12 == 16√3/3 см².
Решение можно найти двумя Проекция боковой грани на основание для правильного тетраэдра равна 1/3 площади основания:So(б.гр) = (1/3)So = 1/3)(a²√3/4) = (a²√3/12) = (8²√3)/12 = (64√3)/12 == 16√3/3 см².2) Для правильного тетраэдра высота основания h равна апофеме A боковой грани. Проекция апофемы на основание равна (1/3) высоты основания.
Решение можно найти двумя Проекция боковой грани на основание для правильного тетраэдра равна 1/3 площади основания:So(б.гр) = (1/3)So = 1/3)(a²√3/4) = (a²√3/12) = (8²√3)/12 = (64√3)/12 == 16√3/3 см².2) Для правильного тетраэдра высота основания h равна апофеме A боковой грани. Проекция апофемы на основание равна (1/3) высоты основания.Косинус угла α наклона боковой грани равен (1/3)h)/(1A) = 1/3.
Решение можно найти двумя Проекция боковой грани на основание для правильного тетраэдра равна 1/3 площади основания:So(б.гр) = (1/3)So = 1/3)(a²√3/4) = (a²√3/12) = (8²√3)/12 = (64√3)/12 == 16√3/3 см².2) Для правильного тетраэдра высота основания h равна апофеме A боковой грани. Проекция апофемы на основание равна (1/3) высоты основания.Косинус угла α наклона боковой грани равен (1/3)h)/(1A) = 1/3.Площадь проекции боковой грани на основание равна:
Решение можно найти двумя Проекция боковой грани на основание для правильного тетраэдра равна 1/3 площади основания:So(б.гр) = (1/3)So = 1/3)(a²√3/4) = (a²√3/12) = (8²√3)/12 = (64√3)/12 == 16√3/3 см².2) Для правильного тетраэдра высота основания h равна апофеме A боковой грани. Проекция апофемы на основание равна (1/3) высоты основания.Косинус угла α наклона боковой грани равен (1/3)h)/(1A) = 1/3.Площадь проекции боковой грани на основание равна:So(б.гр) = S(б.гр)*cos α = (8²√3/4)*(1/3) = (64√3)/12 = 16√3/3 см².
Объяснение:
как то так