Точка касания с гипотенузой ВС является точка Е (СЕ=2, ВЕ=3), с катетом АС точка К, с катетом АВ точка М. Угол А прямой.
СЕ=СК=2, длины отрезков выходящих из одной вершины до точек касания к окружности равны, по этому же правилу
ВЕ=ВМ=3
Центр окружности О, r-радиус окружности. ОК=ОМ=r и ОК перепендик АС, ОМ перпендик АВ. АМОК-квадрат и АМ=АК=r
Тогда АС=r+2, АВ=r+3, ВС=2+3=5 по теореме Пифагора
ВС^2=АС^2+АВ^2
5^2=(r+2)^2+(r+3)^2
r^2+4r+4+ r^2+6r+9=25
2r^2+10r+13=25
2r^2+10r-12=0 сократим все на 2
r^2+5r-6=0
найдем дискрим. Д=25+24=49
корень из Д=7
r1=(-5+7)/2
r1=1
r2=(-5-7)/2=-6(радиус не может быть отрицательным)
Радиус вписан.окружности равен r=1см
Поделитесь своими знаниями, ответьте на вопрос:
Отрезок SO равный 5 корней из 2 метров-перпендикуляр к плоскости треугольника ABC (точка О-центр треугольника, треугольник равносторонний Периметр треугольника ABC равен 12 метров. Найти расстояние от точки S до вершины треугольника A и до стороны AB.
sin ∠45° = √2/2;
cos ∠45° = √2/2;
tg ∠45° = 1;
сtg ∠45° = 1.
Объяснение:
Задание
Вывести тригонометрические функции синуса, косинуса, тангенса и котангенса для угла 45°.
Решение
Рассмотрим прямоугольный треугольник АВС, с прямым углом С, равным 90°, и острым углом А, равным 45°.
1) Найдём значение второго острого угла (угла В):
∠В = 180° - ∠А - ∠С = 180° - 45° - 90° = 45°.
2) Так как ∠А = ∠В = 45°, то это значит, что треугольник АВС - равнобедренный, и в нём катет АС равен катету ВС.
3) Пусть АС = х, тогда и ВС = х, а гипотенузу АВ можно найти по теореме Пифагора:
АВ = √(АС²+ВС²) = √(х²+х²) = √2х² = х√2.
4) Теперь выведем все тригонометрические функции угла А, равного 45°:
а) синус угла 45°:
sin ∠А = ВС : АВ - отношение противолежащего катета к гипотенузе;
sin ∠А = х : х√2 = 1 : √2 = √2/2; а так как ∠А = 45°, то:
sin ∠45° = √2/2;
б) косинус угла 45°:
cos ∠А = АС : АВ - отношение прилежащего катета к гипотенузе;
cos ∠А = х : х√2 = 1 : √2 = √2/2; а так как ∠А = 45°, то:
cos ∠45° = √2/2;
в) тангенс угла 45°:
tg ∠А = BC : АC - отношение противолежащего катета к прилежащему;
tg ∠А = х : х = 1 ; а так как ∠А = 45°, то:
tg ∠45° = 1;
г) котангенс угла 45°:
сtg ∠А = АС : ВС - отношение прилежащего катета к противолежащему;
сtg ∠А = х : х = 1 ; а так как ∠А = 45°, то:
сtg ∠45° = 1.
sin ∠45° = √2/2;
cos ∠45° = √2/2;
tg ∠45° = 1;
сtg ∠45° = 1.