Дано:
АВС - прямоугольный
угол С=90°
угол А=37°
О - центр описанной окружности
Найти:
угол АОС - ?
угол СОВ - ?
Центр окружности, описанной около прямоугольного треугольника, совпадает с серединой гипотенузы, а её радиус равен половине гипотенузы, т.е. АО=ОВ=R.
Медиана, проведённая к гипотенузе, равна её половине, т.е. СО=АО=ОВ.
Рассмотрим треугольник АОС. АОС - равнобедренный, так как АО=ОС, значит, угол САО=углу АСО=37°, а угол АОС=180°-2*37°=106°
Углы АОС и СОВ - смежные, поэтому угол СОВ=180°-106°=74°
ответ: катеты видны под углами 106° и 74°.
Поделитесь своими знаниями, ответьте на вопрос:
Радиус окружности вписанный в правильный треугольник равен 6. найдите высоту этого треугольника
6×2кореньиз3=а
12кореньиз3=а
По теореме Пифагора найдём высоту:
(12кореньиз3)²=(6кореньиз3)²+х²
144×3=36×3+х²
324=х²
х=18