3.
<B = 60° => <HCB = 90-60 = 30° .
Теорема 30-градусного угла прямоугольного треугольника такова: сторона, противолежащая 30-и градусам в прямоугольном треугольнике — равен половине гипотенузы, тоесть: HB = 4 => BC = 4*2 = 8.
<B = 60° => <A = 90-60 = 30°.
По той же теореме следует это: BC = 8 => AB = 8*2 = 16.
HB = 4 => AH = 16-4 = 12.
Вывод: AH = 12.
4.
<OAB & <CDO — пара накрест лежащих углов, так ка прямые параллельны, то накрест лежащие углы друг другу равны, тоесть: <CDO = 47°.
<AOB = 90° => <COD = 90° (так как вертикальные углы).
<COD = 90°; <CDO = 47° => <DCO = 90-47 = 43°.
Вывод: <CDO = 47°; <DCO = 43°; <COD = 90°.
5.
Тема: Равенство треугольников.
По какому-то там признаку (не помню номер) — если 3 угла из каждого треугольника равны, то треугольники также друг другу равны.
Определим же эти углы: Так как прямыеу паралелльны, то накрест лежащие углы равны, тоесть: <ODB == <ACO. Нашл первую пару равных углов!
Вторая пара накрест лежащих друг другу равных углов: <CAO; <OBD.
Вторую пару то определили.
Так как <AOC = 90°, то его вертикальный угол — <DOB — также равен 90 градусам.
Доказали, что в двух треугольниках имеется 3 определения углов, что и означает, что треугольники равны.
И так как треугольники равны, то OB == AO; DO == OC.
Так как треугольники имеют 2 общей стороны, то против вертикальных прямых углов — лежат другу другу равные стороны — DB; AC.
6.
<A = 60° => <C = 30°.
По теореме 30-грдусного угла — катет AB — равен половине гипотенузы AC.
BM — медиана, потому что делит гипотенуз пополам, и также медиана прямоугольного треугольника, проведёнаня к гипотенузе — равна её половине, тоесть: BM == MC == AM = AC/2 = 5 => AC = 5*2 = 10.
BM == MC => <MBE == <MCE = 30° (<C = 30°).
<EMC = 90°; <C = 30° => <ME = MC/2 = 5/2 = 2.5.
Вывод: ME = 2.5.
Поделитесь своими знаниями, ответьте на вопрос:
Периметр ромба ABCD равен 40, а одна из диагоналей – 8. Найдите вторую диагональ, если острый угол ромба равен 30о.
Объяснение:
Точки А и В лежат в плоскости альфа, а точки С и D- в плоскости бета, причём альфа параллельна бета, АВ=СД, а отрезки АС и ВD пересекаются.
а) докажите, что АВ параллельна СD.
б) Один из углов четырёхугольника АВСD равен 65 градусов. Найдите остальные углы
а) АС и ВD пересекаются.
Через две пересекающиеся прямые можно провести плоскость, и притом только одну; то же справедливо и для параллельных прямых.
Следовательно, прямые АВ и СD лежат в той же плоскости. что АС и ВD.
Проведем из D и В перпендикуляры кD и Ве к противоположной плоскости.
Т.к. плоскости α и β параллельны, то кD и Ве параллельны и равны ( на основании того, что это - перпендикуляры между параллельными плоскостями)
Прямые кВ и Dе лежат в одной плоскости кВeD, расстояние между ними равно, следовательно, они параллельны.
АВ принадлежит кВ, DС принадлежит Де, следовательно, АВ||СD.
б) Четырехугольник, в котором противоположные стороны равны и параллельны, - параллелограмм.
Противоположные углы параллелограмма равны.
Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°
Острые углы четырехугольника АВСD равны по 65°. Тупые по-180-65=115°———