annazhurawlewa
?>

Чому дорівнює медіана, проведена до гіпотенузи, якщо розміри прямокутного трикутника 3 см, 4 см, 5 см? Відповідь запишіть без одиниці вимірювання, тільки числове значення.

Геометрия

Ответы

iuv61

2,5

Объяснение:

У прямокутному трикутнику гіпотенуза - найдовша сторона, тому в даному випадку гіпотенуза = 5 см.

Медіана, проведена до гіпотенузи, становить половину довжини гіпотенузи, тому медіана = 5:2=2,5 см.

Ka-shop2791

1)Если углы смежные, то их сумма равна 180 градусов. Пусть х(градусов)-1 угол, тогда 2 угол 3х(градусов), получим уравнение:

х+3х=180,

4х=180,

х=45 

45(градусов)-1 угол, 45*3=135(градусов)-2 угол.

2)Пусть 1 часть угла равна х(градусов), тогда 1 угол 4х(град), 2 угол 5х(град), а их сумма 180, имеем:

4х+5х=180

9х=180

х=20

20*4=80(град)-1 угол

20*5=100(град)-2 угол 

3) Пусть угол ВСД-х(град), тогда угол АСД-4х(град), т.к. углы смежные, то их сумма 180(град). Имеем уравнение:

х+4х=180

5х=180,

х=36

36(град)-угол ВСД

36*4=144(град)-угол АСД

Pavlovna897

Отрезки, для длин которых выполняется пропорция

Подобные треугольники в евклидовой геометрии — треугольники, углы у которых соответственно равны, а стороны одного треугольника пропорциональны сходственным сторонам другого треугольника.

Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов

Средняя линия фигур в планиметрии — отрезок, соединяющий середины двух сторон этой фигуры. Понятие употребляется для следующих фигур: треугольник, четырёхугольник, трапеция.

треугольники в евклидовой геометрии — треугольники, углы у которых соответственно равны, а стороны соответственно пропорциональны. Являются подобными фигурами. В данной статье рассматриваются свойства подобных треугольников в евклидовой геометрии. Некоторые утверждения являются неверными для неевклидовых геометрий.

MicroExcel.ru

MicroExcel.ru Математика Геометрия

МатематикаГеометрия

Свойства высоты прямоугольного треугольника

11.07.202052995

В данной публикации мы рассмотрим основные свойства высоты в прямоугольном треугольнике, а также разберем примеры решения задач по этой теме.

Примечание: треугольник называется прямоугольным, если один из его углов является прямым (равняется 90°), а два остальных – острые (<90°).

Содержание скрыть

Свойства высоты в прямоугольном треугольнике

Свойство 1

Свойство 2

Свойство 3

Свойство 4

Пример задачи

Свойства высоты в прямоугольном треугольнике

Свойство 1

В прямоугольном треугольнике две высоты (h1 и h2) совпадают с его катетами.

Три высоты в прямоугольном треугольнике

Третья высота (h3) опускается на гипотенузу из прямого угла.

Свойство 2

Ортоцентр (точка пересечения высот) прямоугольного треугольника находится в вершине прямого угла.

Свойство 3

Высота в прямоугольном треугольнике, проведенная к гипотенузе, делит его на два подобных прямоугольных треугольника, которые также подобны исходному.

Деление прямоугольного треугольника высотой из вершины прямого угла на подобные треугольники

1. △ABD ∼ △ABC по двум равным углам: ∠ADB = ∠BAC (прямые), ∠ABD = ∠ABC.

2. △ADC ∼ △ABC по двум равным углам: ∠ADC = ∠BAC (прямые), ∠ACD = ∠ACB.

3. △ABD ∼ △ADC по двум равным углам: ∠ABD = ∠DAC, ∠BAD = ∠ACD.

Доказательство: ∠BAD = 90° – ∠ABD (ABC). В то же время ∠ACD (ACB) = 90° – ∠ABC. Следовательно, ∠BAD = ∠ACD.

Аналогичным образом доказывается, что ∠ABD = ∠DAC.

Свойство 4

В прямоугольном треугольнике высота, проведенная к гипотенузе, вычисляется следующим образом:

1. Через отрезки на гипотенузе, образованные в результате ее деления основанием высоты:

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике

Высота к гипотенузе в прямоугольном треугольнике

2. Через длины сторон треугольника:

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике через его стороны

Высота к гипотенузе в прямоугольном треугольнике

Данная формула получена из Свойства синуса острого угла в прямоугольном треугольнике (синус угла равен отношению противолежащего катета к гипотенузе) :

Синус острого угла в прямоугольном треугольнике (формула)

Синус острого угла в прямоугольном треугольнике (формула)

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике через его стороны

Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой, находящейся на противолежащей стороне

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Чому дорівнює медіана, проведена до гіпотенузи, якщо розміри прямокутного трикутника 3 см, 4 см, 5 см? Відповідь запишіть без одиниці вимірювання, тільки числове значення.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

bsi771184
Shteinbakh
Наталья_Васищев
Vitalik6928
axo-geo
Bezzubova_Stepanov1355
мария Кузив1393
vodolaz8384
chavagorin
vladburakoff5
Nataliefremova2015808
AOS2015
ALLA1868
gurman171
Lvova_Aleksandr933