Чертим прямую - произвольную, пусть на чертеже это прямая α.
1)
Возводим перпендикуляр из какой-то точки - это точка касания окружности со стороной (основанием) треугольника.
2)
От этой точки вверх откладываем длину заданного радиуса вписанной окружности. Это - центр О вписанной окружности будущего треугольника АВС.
3)
Проводим окружность с заданным по условию радиусом ( который мы отложили на перпендикуляре).
4)
Откладываем на возведенном ранее перпендикуляре с вершиной в центре О окружности угол, дополняющий половину заданного в условии угла до 90° .
Например, задан угол 80°, его половина - 40°, значит, откладываем угол 50° с вершиной в центре О.
От О продлеваем сторону угла до пересечения с прямой
Решение:
Чертим прямую - произвольную, пусть на чертеже это прямая α.
1)
Возводим перпендикуляр из какой-то точки - это точка касания окружности со стороной (основанием) треугольника.
2)
От этой точки вверх откладываем длину радиуса вписанной окружности. Это - центр О вписанной окружности будущего треугольника АВС.
3)
Проводим окружность с заданным по условию радиусом ( который мы отложили на перпендикуляре).
4)
Откладываем на возведенном ранее перпендикуляре с вершиной в центре О окружности угол, дополняющий половину заданногов условии угла до 90° .
Например, задан угол 80° , его половина - 40°, значит, откладываем угол 90-40=50° с вершиной в центре О.
От этой вершины О продлеваем сторону угла до пересечения с первой прямой α.
Точка пересечения с ней ( обозначим ее А) - вершина заданного угла.
5)
Достраиваем угол А до полного ( заданной величины) и проводолжаем его сторону как касательную к окружности - строим сторону треугольника.
6)
Отложим на этой прямой длину известной по условию стороны, обозначим точку В - вершину второго угла треугольника.
7)
От получившейся второй вершины В треугольника до пересечения с прямой α.
Точка пересечения С третьего угла треугольника.
Получен треугольник АВС с вписанной окружностью заданного радиуса, заданными углом и длиной одной из сторон.
Касательную из точки А к окружности можно провести следующим образом:
1. На отрезке ОА ( он же биссектриса угла А) как на диаметре строим окружность радиуса R= [OA]:2 ( как делить отрезок пополам Вы наверняка знаете).
2. Точки а и b пересечения полученной окружности с построенной ранее ( вписанной) - полученные точки касания; собственно, нам нужна только точка а на данной стороне.
Точно так же строим из В касательную к окружности с точкой касания с.
.
Точка пересечения с ней ( обозначим ее А) - вершина заданного угла. 5) Достраиваем угол А до полного ( заданной величины) и проводолжаем его сторону как касательную к окружности - строим сторону треугольника.
6) Отложим на этой прямой длину известной по условию стороны, обозначим точку В - вершину второго треугольника.
7) От получившейся второй вершины В нужного треугольника проводим касательную к окружности до пересечения с первой прямой. Точка пересечения С - третья вершина С треугольника.
Получен треугольник АВС с вписанной окружностью заданного радиуса, заданными углом и длиной одной из сторон.
Касательную из точки А к окружности можно провести следующим образом:
1. На отрезке ОА ( он же биссектриса угла А) как на диаметре строим окружность радиуса R= [OA]:2 ( как делить отрезок пополам Вы наверняка знаете).
2. Точки а и b пересечения полученной окружности с построенной ранее ( вписанной) - полученные точки касания; собственно, нам нужна только точка а на данной стороне.
Точно так же строим из В касательную к окружности с точкой касания с.
Поделитесь своими знаниями, ответьте на вопрос:
Із точок А і В , що лежать у різних гранях двогранного кута , величина якого 30*, проведено до його ребра перпендикуляри АС і ВD . Знайдіть відрізок СD, якщо АС= корінь з 3 см , BD=2 см , АВ= корінь з 17 см
1)В любом описанном четырехугольнике суммы противоположных сторон равны,то есть у тебя трапеция ABCD ,
то есть AB+CD=BC+AD (5+6=11) P=11+11=22
3)Пусть АВСD - данный ромб. АС = 16 см, ВD = 12 см. О - точка пересечения диагоналей и центр вписанной окружности.
1. Из треугольника АОВ находим сторону ромба.
АО = ½ АС = 8 см, ВО = ½ ВD = 6 см - (свойство диагоналей параллелограма).
АВ² = АО²+ВО² - (теорема Пифагора)
АВ = 10 см
2. В точку касания окружности к стороне АВ (обозначим ее К) проводим радиус ОК. ОК перпендикулярно АВ.
3. Рассмотрим два прямоугольных треугольника АКО и ВКО.
По теореме Пифагора:
ОК² = АО² - АК²
ОК² = ВО² - КВ²
4. Приравниваем правые части полученных равенств, так как левые равны.
АО² - АК² = ВО² - КВ²
Пусть АК = х, тогда КВ = 10 -х. Имеем:
64 - х² = 36 - (10 - х)²
64 - х² - 36 + 100 - 20х + х² = 0
20х = 128
х = 6,4
АК = 6,4 см.
5. Из равенства ОК² = АО² - АК² находим радиус.
ОК² = 64 - 40,96 = 23,04
ОК = 4,8 см.
ответ. 4,8 см.