Объяснение:
1. Сумма углов правильного n-угольника равна 180 • n - 360 или 180 • (n-2). А теперь считаем:
180 • 14 - 360 = 2160 или 180 • (14 - 2) = 2160
2.Площадь параллелограмма равна: сторона * высоту, проведенную к ней. Следовательно: 84 \ 12 = 7 (см)
3.Обозначим треугольник как АВС где АС основание, ВК - высота. зная что АВ = 15, а ВК = 9 найдём АК по теореме пифагора:
АК в квадрате = АВ в квадрате-ВКв квадрате , АК в квадрате = 225 - 81
АК=корень из 144 , АК = 12.
так как треуг равнобедренный то АВ = СВ = 15 . Найдём КС по теореме пифагора:
КС в квадрате = ВС в кв-ВК в кв , КС в кв = 225-81=144 в корне
КС = 12, значит АС = АК+КС
АС=24 , найдём площадь по формуле
ответ:108 см кв
4.Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам.
Пусть ВО = х, тогда BD = 2x, AC = 2x +28, AO = x + 14
ΔABO: ∠O = 90°
По теореме Пифагора:
AB² = AO² + OB²
26² = (x + 14)² + x²
x² + 28x + 196 + x² - 676 = 0
2x² + 28x - 480 = 0
x² + 14x - 240 = 0
D/4 = 7² + 240 = 49 + 240 = 289 = 17²
x = -7 + 17 = 10 или x = -7 -17 = -24 не подходит по смыслу задачи
BD = 20 см
AC = 20 + 28 = 48 см
Sabcd = 1/2 ·BD · AC = 1/2 · 20 · 48 = 480 (см²)
5.фото
а 2 вариант на подобия этого подставить под формулы
1) Сторона параллелограмма равна 21 см, а высота, проведённая к ней, 15 см. Найдите площадь параллелограмма.
a = 21 см
h = 15 см
S = ah = 21 · 15 = 315 см²
2) Сторона треугольника равна 5 см, а высота, проведённая к ней, в 2 раза больше стороны. Найти площадь треугольника.
а = 5 см
h = 2a = 2 · 5 = 10 см
S = 1/2 · ah = 1/2 · 5 · 10 = 25 см²
3) В трапеции основания равны 6 и 10 см, а высота равна полусумме длин оснований. Найдите площадь трапеции.
a = 10 см
b = 6 см
h = (a + b)/2 = (6 + 10)/2 = 16/2 = 8 см
S = (a + b)/2 · h = (6 + 10)/2 · 8 = 8 · 8 = 64 см²
4) Стороны параллелограмма равны 6 и 8 см, а угол между ними равен 30 градусам. Найти площадь параллелограмма.
а = 6 см
b = 8 см
α = 30°
S = ab · sinα = 6 · 8 · sin30° = 48 · 1/2 = 24 см²
Поделитесь своими знаниями, ответьте на вопрос:
Дана точка с координатами (0;4, 11 Напиши координаты точки, симметричной данной относительно оси x.
(0;-4.11)
Объяснение: