1) Цилиндр описанный, => прямоуг.треуг.вписан в окружность, => R равен половине гипотенузы
треугольник равнобедренный, по т.Пифагора
(2R)^2 = 2x^2, где x---катет
R^2 = x^2 / 2
R = x / корень(2)
Sбок.призмы = высота * (x+x+гипотенуза) = 40
2x + 2R = 40/10 = 4
x+R = 2
x = 2-R
R = (2-R) / корень(2)
2-R-Rкорень(2) = 0
2-R(1+корень(2)) = 0
R = 2 / (1+корень(2))
можно избавиться от иррациональности в знаменателе:
домножить числитель и знаменатель на сопряженное выражение (1-корень(2))
R = 2(1-V2) / ((1-V2)(1+V2)) = 2(1-V2) / (1-2) = 2(корень(2) - 1)
2) tgα=h/R, где R-радиус основания конуса, h-высота конуса
Следовательно, h=R*tgα
2)S(сеч)=ah/2=(2Rh)/2=Rh
S(сеч)=Q => Rh=Q =>R*R*tgα=Q
R²tgα=Q
R=√(Q/tgα)
3)L=2ПR
L=2П√(Q/tgα)
3) 24 ( фото с объяснением сверху)
4) Vшара=4пR^3/3
288п=4пR^3/3
R=6
Hцилиндра=2R=12
Sполповцил=2пR(R+H)=216п
Поделитесь своими знаниями, ответьте на вопрос:
1)Дано трикутник АВС, точка М - середина АВ, точка N- середина ВС, точка К-середина АС. Укажіть відрізок, у який переходить відрізок ВС внаслідок гомотетії з центром у точці А і коефіцієнтом 0, 5 2) Знайди координати точки, відносно якої симетричні точки А(2;3) і В(-8;7
1. На данной прямой а отметим произвольную точку А.
2. Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С.
3. Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С.
4. Через точки пересечения этих окружностей (К и Н) проведем прямую b.
Прямая b - искомый перпендикуляр к прямой а. (см. рис. 1)
5. Проведем окружность с центром в точке А с радиусом, равным данному отрезку k. Точки пересечения этой окружности с прямой b обозначим M и N. (см. рис. 2)
Точки М и N - точки, удаленные от точки пересечения прямых на расстояние, равное длине данного отрезка.
Все построение надо выполнять, конечно, на одном чертеже. Для наглядности построение последнего пункта выполнено отдельно.