В равнобедренном треугольнике АВС точки К и М являются серединами боковой стороны АВ и ВС соответственно. ВД – медиана треугольника. Доказать, что ∆ ВКД = ∆ ВМД
ВД по свойству медианы равнобедренного треугольника, в котором АВ=ВС, является еще биссектрисой угла В и высотой к основанию АС
∠АВД=∠СВД,
В треугольниках ВКД и ВМД углы при В равны ( ВД - биссектриса угла АВС)
Стороны КВ и МВ равны ( т.к. КМ делит равные АВ и ВС пополам).
ВД - их общая сторона
В ∆ КВД и ∆ МВД равны две стороны и угол, заключенный между ними.
По первому признаку равенства треугольников ∆ КВД = ∆ МВД, что и требовалось доказать.
Поделитесь своими знаниями, ответьте на вопрос:
На листе клетчатой бумаге со стороной клетки один см нарисуй прямоугольник 3х4. Разрежьте его по сторонам клеток на две части у которых площади равны а периметр отличаются на 2 см
ВД по свойству медианы равнобедренного треугольника, в котором АВ=ВС, является еще биссектрисой угла В и высотой к основанию АС
∠АВД=∠СВД,В треугольниках ВКД и ВМД углы при В равны ( ВД - биссектриса угла АВС) Стороны КВ и МВ равны ( т.к. КМ делит равные АВ и ВС пополам). ВД - их общая сторонаВ ∆ КВД и ∆ МВД равны две стороны и угол, заключенный между ними. По первому признаку равенства треугольников ∆ КВД = ∆ МВД, что и требовалось доказать.