Равиль_Евгеньевич1808
?>

Радіус кола, описаного навколо правильного многокутника, в √2рази більший за радіус вписаного в цей многокутник кола. Знайдіть периметр многокутника, якщо його сторона дорівнює 4см.

Геометрия

Ответы

Savelieva24

Пусть B-Начало координат

Ось X - BC

Ось Y - перпендикулярно X в сторону A

Ось Z - MB

Найдем MB из треугольника MAB = √(6^2-3^2)= 3√3

Координаты точек

E (1/2;√3/2;0)

D (2,5;√3/2;0)

L( 1;√3;√3)

Уравнение плоскости основания ABC

z=0

Уравнение плоскости  EDL

ax+by+cz+d=0

Подставляем координаты точек E D L

a/2+√3b/2+d=0

2,5a+√3b/2 + d =0

a+√3b+√3c + d=0

a=0 Пусть d = - √3/2 тогда b=1 c= -1/2

Уравнение EDL

y - z/2 -√3/2=0

Косинус искомого угла равен

| (0;0;1) * (0;1;-1/2) | / | (0;0;1) |  / |  (0;1;-1/2) | = 1/√5

Cам угол  - arccos(√5/5)

Kharkina1328

ответ:  ≈11.66.

Объяснение:

Решение.

По условию треугольник ACD - равнобедренный:

Если ВС=х, то AD=CD=2x/

Угол при вершине (угол D) равен 60°.

∠CAD=∠ACD=60°/ Следовательно ΔACD-равносторонний со сторонами равными 2√3.

По условию AD=2x;  ВС=х.  Тогда

ВС=1/2AD;

ВС=1/2*2√3;

ВС=√3.

------------------

По построению получается, что трапеция Прямоугольная (См. скриншот).

Находим сторону АВ:

Из прямоугольного треугольника АВС по т. Пифагора

АВ²=АС²-ВС²=(2√3)²-(√3)²=12-3=9;

АВ=√9=3.  Тогда периметр трапеции

P=AB+BC+CD+AD=3+√3+2√3+2√3=3+5√3≈11.66.


В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC р

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Радіус кола, описаного навколо правильного многокутника, в √2рази більший за радіус вписаного в цей многокутник кола. Знайдіть периметр многокутника, якщо його сторона дорівнює 4см.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ashantik
Valentina
Валуева
arturcristian
krikatiy
ksankaaleks611
Коробкова1437
ekrosenergoserv
yatania-popovich7
Maria095096
aananasAnastiya1270
olimov
Yevgenevich1150
Бунеева
Акоповна