1. 14см
2.21 см
3. 20 см
1. EF это средняя линия двух сторон треугольникаАВС => если ЕА=4 то ЕВ тоже = 4 , также и с ВС, FC=5 => BF =5. основание АС = 10, а т.к. EF это ср.линия то она равна половине АС то есть =5
2. здесь абсолютно тоже самое только на оборот.
MN=3 и это причём ср.линия то АС будет равен 6
MB=4, и если брать св-ва ср.линии то получается что АВ=8, также и с ВС, она будет равна 7 (3,5+3,5=7)
3. Вот тут уже действует правило: Р каждого маленького треугольника в 2 раза < Р большого треугольника. Исходя из этого правила РА¹В¹С¹= 20см.
Поделитесь своими знаниями, ответьте на вопрос:
Дано: MN= 2 м; ∢ MNO =60°. Найти
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Из прямоугольного ΔACH по теореме Пифагора:
a² = h² + a₁² = 6² + 2² = 36 + 4 = 40; a = √40 = 2√10
Катет AC = 2√10 см/
Из прямоугольного ΔBCH по теореме Пифагора:
b² = h² + b₁² = 6² + 18² = 36 + 324 = 360; b = √360 = 6√10
Катет BC = 6√10 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.