Дано:
ABCS - правильная треугольная пирамида
SO - высота пирамиды SO⊥(ABC)
Sбок = 96 см²
Sполн = 112 см²
-----------------------------
Найти:
AB - ?
SO - ?
1) Сначала запишем формулу площадь полной поверхности пирамиды, именно по такой формуле мы найдем площадь основания:
Sполн = Sбок + Sосн - Площадь полной поверхности пирамиды ⇒
Sосн = Sполн - Sбок = 112 см² - 96 см² = 16 см²
2) Поскольку треугольная пирамида правильная, то в основе лежит правильный треугольник. Следовательно, мы найдем сторону его основания:
- Площадь основания правильной пирамиды
- Сторона его основания
AB = √4×16 см²/√3 = √64 см²/√3 × √3/√3 = √64√3 см²/3 =
3) Далее находим радиус вписанной окружности основания:
AB = MO×2√3 - нахождение стороны основания.
MO = AB/2√3 - радиус вписанной окружности основания
MO =
4) Далее находим площадь грани:
Sбок = 3Sграни ⇒ Sграни = Sбок/3 = 96 см²/3 = 32 см², тогда высота грани:
SM = 2Sграни/AB - Высота с площадью грани
5) И теперь находим высоту SO по теореме Пифагора:
SO = √SM² - MO² - нахождение высоты SO
ответ:
P.S.
Рисунок показан внизу:↓
Поделитесь своими знаниями, ответьте на вопрос:
В треугольник вписана окружность. Три касательные к этой окружности отсекают три треугольника, сумма периметров которых равна 10. Найти периметр данного треугольника.
см. рисунок
Вертикальные углы равны между собой.
Один угол х° и второй тоже х°
х+х=146
2х=146
х=73°
Два смежных с ними 180°-73=107°
ответ 73°;107°73°107°
3.
см. рисунок
х+х+180-х=202
х=202-180
х=22
ответ. 22°; 158°;22°
4. см. рисунок
Один из данных углов х, второй 2х
х:2х=1:2
Смежный с первым 5у, смежный со вторым 4у, 5у:4у=5:4
Сумма смежных углов 180°
х+5у=180 ⇒ х=180-5у
2х+4у=180 ⇒ 2·(180-5у)+4у=180; 360-10у+4у=180; 6у=180 у=30°
5у=150°
4у=120°
х=180°-150°=30°
2х=60°
ответ. один угол 30°, второй угол 60°
30:60=1:2
смежный с первым 150°
смежный со вторым 120°
150°:120°=5:4