kapral1812
?>

1. В треугольнике ABC угол В равен90 градусов, АС=24см. Найти AB.​

Геометрия

Ответы

yuliasam
Cм. рисунок в приложении
В основании пирамиды равносторонний треугольник АВС:
АВ=ВС=АС=4 см.
В равностороннем треугольнике все высоты равны.
Высоты являются одновременно медианами и биссектрисами.
МО ⊥ пл. АВС.
ОА=ОВ=ОС=R ( радиус описанной окружности).
R=a√3/3, где а- сторона правильного треугольника.
ОА=ОВ=ОС=4√3/3
ОК=OD=r ( радиус вписанной окружности).
Медианты в точке пересечения делятся в отношении 2:1, считая от вершины.
r=R/2=2√3/3

Равные проекции имеют равные наклонные.
МА=МВ=МС.

а) АК- высота, медиана и биссектриса Δ АВС.
АК⊥ВС
ВК=КС.
МК⊥BC  по теореме о трех перпендикулярах ( проеция МК- ОК, ОК⊥ВС, так как АК ⊥ ВС).
ВС ⊥ АК и ВС⊥ МК
ВС ⊥ двум пересекающимся прямым плоскости АМК, значит по признаку перпендикулярности прямой и плоскости, ВС ⊥ пл. АМК, а значит и пл. АМО.
Чтобы найти линейный угол двугранного угла между плоскостями АМО (АМК) и ВМС, надо провести перпендикуляры к линии их пересечения.
Линией пересечения является МК.
Проводим АЕ⊥МК и ЕF║ВС. (ВС⊥МК ⇒ ЕF⊥MK).

б) Угол между плоскостями АВС и МВС.
Линией пересечения плоскостей является сторона ВС.
АК⊥ВС
МК⊥ВС
Угол МКА - линейный угол двугранного угла.
Из прямоугольного треугольника МОК
tg ∠МКО=MO/OК=2/(2√3/3)=√3
 ∠МКО=60°

в) угол между прямой МС и плоскостью АВС - угол между прямой и её проекцией на эту плоскость.
Проекцией МС на плоскость АВС является ОС.
Из прямоугольного треугольника МОС
tg∠MCO=MO/OC=2/(4√3/3)=√3/2
∠MCO=arctg (√3/2).

Точка m равноудалена от всех сторон правильного треугольника abc ,сторона которого равна 4 см. расст
Fedorov1283
Найдем высоту пирамиды SO из треугольника BSO.
Катет ВО равен 4√2 как половина диагонали квадрата (это основание пирамиды со стороной 8):
 SO = √(6² - (4√2)²) = √(36-32) = √4 = 2.
Так как отрезок МК параллелен диагонали АД, то он отсекает на высоте одну третью часть (свойство подобных треугольников), которая равна:
ОР = (1/3)*2 = 2/3.
Угол ВОР - это угол пересечения заданных плоскостей (угол между плоскостями — это угол между перпендикулярами к линии их пересечения, проведенными в этих плоскостях).
Тангенс этого угла равен tg α = (2/3) / (4√2) = 1 /(6√2) =  0,117851.
Угол равен arc tg  0,117851 =  0,11731 радиан = 6,721369°.
Вправильной четырехугольной пирамиде sabcd точка s- вершина ,ab=8, sc=6.точка m принадлежит ребру sa

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1. В треугольнике ABC угол В равен90 градусов, АС=24см. Найти AB.​
Ваше имя (никнейм)*
Email*
Комментарий*