это канонический вид уравнения. 12х-9у+72 = 0, сократим на 3: 4х-3у+24 = 0 общий вид этого уравнения. у = (4/3)х+8 уравнение с коэффициентом.
2) уравнение высоты, проведенной из вершины В. Эта высота перпендикулярна АС и имеет коэффициент при х, равный -1/(4/3) = -3/4. Уравнение высоты из точки В имеет вид у = (-3/4)х+в. Для нахождения коэффициента в в полученное уравнение подставим координаты точки В. 1 = (-3/4)*1+в, в = 1+(3/4) = 7/4. Тогда уравнение примет вид у = (-3/4)х+(7/4) или в общем виде 3х+4у-7 = 0.
3) длина высоты из вершины В. Надо найти координаты основания высоты как точку пересечения высоты и стороны АС. 4х-3у+24 = 0|x3 12x-9y+72 = 0 3х+4у-7 = 0|x-4 -12x-16y+28 = 0 ______________ -25y+100 =0 y = 100/25 = 4. x = (3y-24)/4 = (3*4-24)/4 = -12/4 = -3. Точка Д(-3; 4). Длина высоты ВД равна: BД = √((Хд-Хв)²+(Уд-Ув)²) = √25 = 5.
4) угол А. Для этого найдём длины сторон: 1) Расчет длин сторон АВ = √((Хв-Ха)²+(Ув-Уа)²) = √50 = 7,071067812, BC = √((Хc-Хв)²+(Ус-Ув)²) = √125 = 11,18033989, AC = √((Хc-Хa)²+(Ус-Уa)²) = √225 = 15. cos A= (АВ²+АС²-ВС²)/(2*АВ*АС) = 0,707107 A = 0,785398 радиан = 45 градусов.
ddavydov1116
24.06.2020
1 Если в параллелограмме диагонали перпендикулярны,то это ромб.У ромба все стороны равны.Периметр равен 52см,значит сторона равна 52:4=13см.Диагонали точкой пересечения делятся пополам. Пусть О-точка пересечения.Тогда ВО=1/2*BD=1/2*10=5см АО найдем по теореме Пифагора АВ²=АО²+ВО² 13²=АО²+5² АО²=169-25=144 АО=12см Отсюда АС=2*АО=2*12=24см 2 Пусть точка М лежит внутри треугольника.Соединим точку с вершинами данного треугольника. Используем неравенство треугольника:сумма двух сторон треугольника всегда больше третьей стороны.Тогда AM+BM>AB AM+CM>AC BM+CM>BC прибавим 2(AM+BM+CM)>AB+BC+AC AM+BM+CM>(AB+BC+AC) AM+BN+CN>P/2 3 Соединим центр с вершинами трапеции.Построим во второй части симметричную данной трапецию.Так как боковые грани трапеции равны меньшему основанию,то мы получили правильный шестиугольник вписанный в окружность.Все стороны 6 треугольников равны 2,все треугольники правильные. Площадб трапеции будет равна половине площади шестиугольника или 3 площадям правильных треугольников со стороной 2. Площадь треугольника равна половине произведения квадрата стороны на синус 60 гр Площадь трапеции равна 3*1/2*2²*√3/2=3√3
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найди длину хорды DC, если: AM= 1 дм; MB= 8 дм; CM = 2 дм. MD =___дм; DC = ___ дм.
1) уравнение стороны АС:
это канонический вид уравнения.
12х-9у+72 = 0, сократим на 3: 4х-3у+24 = 0 общий вид этого уравнения.
у = (4/3)х+8 уравнение с коэффициентом.
2) уравнение высоты, проведенной из вершины В.
Эта высота перпендикулярна АС и имеет коэффициент при х, равный -1/(4/3) = -3/4.
Уравнение высоты из точки В имеет вид у = (-3/4)х+в.
Для нахождения коэффициента в в полученное уравнение подставим координаты точки В.
1 = (-3/4)*1+в,
в = 1+(3/4) = 7/4.
Тогда уравнение примет вид у = (-3/4)х+(7/4) или в общем виде
3х+4у-7 = 0.
3) длина высоты из вершины В.
Надо найти координаты основания высоты как точку пересечения высоты и стороны АС.
4х-3у+24 = 0|x3 12x-9y+72 = 0
3х+4у-7 = 0|x-4 -12x-16y+28 = 0
______________
-25y+100 =0 y = 100/25 = 4.
x = (3y-24)/4 = (3*4-24)/4 = -12/4 = -3.
Точка Д(-3; 4). Длина высоты ВД равна:
BД = √((Хд-Хв)²+(Уд-Ув)²) = √25 = 5.
4) угол А. Для этого найдём длины сторон:
1) Расчет длин сторон
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √50 = 7,071067812,
BC = √((Хc-Хв)²+(Ус-Ув)²) = √125 = 11,18033989,
AC = √((Хc-Хa)²+(Ус-Уa)²) = √225 = 15.
cos A= (АВ²+АС²-ВС²)/(2*АВ*АС) = 0,707107
A = 0,785398 радиан = 45 градусов.