У ромба все стороны равны => 1 сторона = 85/4 = 21,25
Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам
Примем 1 диагональ за 2х, а другую за 9х и рассмотрим прямоугольный треугольник АОВ
В нем гипотенуза = 21,25, а катеты 2х/2 и 9х/2
По теореме Пифагора найдем катеты
х^2 + (4,5х)^2 = 21,25^2
х^2 + 20,25х^2 = 21,25^2
21,25х^2 = 21,25^2
х^2 = (21,25^2)/21,25
х^2 = 21,25
х = √21,25
1 диагональ = 2√21,25
2 диагональ = 9√21,25
Площадь ромба равна произведению длины его стороны на высоту
Площадь ромба равна половине произведения его диагоналей.
0,5 * 2√21,25 * 9√21,25 = 0,5 * 2 * 9 * 21,25 = 191,25
21,25 * h = 191,25
h = 191,25/21,25
h = 9
Поделитесь своими знаниями, ответьте на вопрос:
У прямокутному трикутнику с – гіпотенуза, h – висота, проведена до гіпотенузи, a, b –катети, a c , b c – відповідно проекції даних катетів на гіпотенузу. h = 2, 4 см, b c = 3, 2 см.Встановити відповідність між невідомими елементами прямокутного трикутника (1-4) та їхчисловими значеннями (А-Д):1) a; А) 5 см;2) b; Б) 1, 8 см;3) a c ; В) 9, 6 см;4) с. Г) 3 см;Д) 4 см очень С РИШЕНИЕМ
перед решением нужно ещё и довольно громоздкое доказательство
площадь боковой поверхности равна произведению высоты боковой грани на полупериметр основания. Но нужно доказать, что высоты у всех граней равны.
Кроме того нужно доказать, что высота пирамиды проходит через центр вписанной окружности.
Здесь, по сути три задачи.
Площадь основания по формуле Герона = 48 кв.см
радиус вписанной окружности = площадь/п.периметр=48/16=3см
высота бок.грани = радиус/cos45=3√2
площ.боковая=3√2 * 16=48√2
ну и для полной добавить найденную площадь основания.
Для полного понимания, если вдруг захочется разобраться, читайте Атанасяна 2001, Геометрия-10, задачи 246-248