У ΔКМР ∠К=90⁰. Назовите катеты и гипотенузу. 1)невозможно определить 2)Катети КМ и МР, гипотенуза КР 3)Катети МР иКР, гипотенуза КМ. 4)Катети КМ и КР, гипотенуза МР.
ВВ1 - биссектриса угла АВD, т.к. АВ1 = В1D , то по признаку равнобедренного треугольника если медиана и биссектриса, выходящие из одной вершины , совпадают, то этот треугольник равнобедренный => треугольник АВD равнобедренный, тогда АВ = ВD => треугольник ABD - равносторонний! Т.к. АВ = ВD = АD (АВ = АD т.к. АВСD - ромб) => Все углы в равностороннем треугольнике равны по 60 градусов.
В ромбе треугольник АВD = треугольнику ВDС , по 3-ему признаку равенства треугольников (по трем сторонам) (т.к. ВD - общая сторона, АВ = АD = DC = ВС) Отсюда:
Угол А = Углу С = 60 градусов.
АС и BD - диагонали ромба, они же являются и биссектрисами соответствующих углов! Отсюда Угол B = угол ABD + угол DBC = 2 угла ABD = 2 * 60 = 120
Аналогично угол D = 120 градусов.
ответ: 60, 120, 60, 120.
по моему так
Окунева-Мотова
27.12.2020
Для начала найдем отношение ВР/РС. Для этого: Проведем BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD. ∆АКМ ~ ∆BKD по двум углам (1). ∆АРС ~ ∆DРВ по двум углам (2). Из (1) BD/AM=4 и BD=4AM = 2AC. Из (2) BP/PC=2. ВМ - медиана и по ее свойствам Sabm=Scbm. Треугольники АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc. Sakm=Sabc*1/(2*5)=(1/10)*Sabc. Треугольники ABP и APC - треугольники с общей высотой к стороне ВC. Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc. Тогда Skpcm=Sapc-Sakm = (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc. Sabk/Skpcm=(2/5)/(7/30)=12/7.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
У ΔКМР ∠К=90⁰. Назовите катеты и гипотенузу. 1)невозможно определить 2)Катети КМ и МР, гипотенуза КР 3)Катети МР иКР, гипотенуза КМ. 4)Катети КМ и КР, гипотенуза МР.
4)Катеты КМ и КР,гипотенуза МР