Задача 2 рисунок 1
Дано: ABC - прямоугольный равнобедренный треуг.
AD = 8 см - медиана
Найти: CB = ?
1) ABC - прямоугольный равнобедренный треуг.
угол А = 90 гр. => угол В + угол С = 90 гр.,
угол В = угол С (т.к. АВС равнобедренный) => угол В = угол С = 90/2 = 45 гр.
AD - высота, медиана и биссектриса (по свойству равнобедренного треуг.) => BD = CD
2) Рассмотрим треуг. ABD
угол D = 90 гр.
tg 45 = AD/BD => BD = AD/tg 45
BD = 8 см/1 = 8 см
3) CB = BD + CD = 8 + 8 = 16 см
ОТВЕТ: CB = 16 см
Задача 3 Рисунок 2
Дано: NMK - прямоугольный треуг.
NS = 10 см - медиана
угол M = 30 гр.
Найти: NK = ?
1) угол M + угол K = 90 гр (по свойству прямоугольного треуг.) =>
=> угол K = 90 - 30 = 60 гр
2) NS - медиана => MS = SK
3) NK = 1/2*MK (т.к. угол против 30 гр. равен половине гипотенузы) =>
=> NK = MS = SK
3) Рассмотрим треуг. NSK - равнобедренный треуг. (NK = SK)
угол K = 60 гр => угол S = угол N (т.к. углы при основании равны)
угол S = угол N = (180 - 60)/2 = 60
треуг. NSK - равносторонний => NK = NS = 10 см
ОТВЕТ: NK = 10 см
Поделитесь своими знаниями, ответьте на вопрос:
Найдите радиус окружности описанной около равнобедренного треугольника боковые стороны равны 4 см а угол заключённый между ними равен 120 градусов. Можно с даном и решением если можно с рисунок
ответ: S тр. ABCD = 300 ед.кв.
Объяснение: Проведём из т.A к большему основанию BC высоту AM.
Отрезок DC не только боковая сторона прямоугольной трапеции ABCD, но и высота этой трапеции.
DC ⊥ BC; AM ⊥ BC ⇒ DC ║ AM ⇒ CD = AM = 15 ед.
Т.к. AM - высота ⇒ ΔAMB - прямоугольный.
Найдём катет MB по т.Пифагора:
MB = √(AB² - AM²) = √(25² - 15²) = √(625 - 225) = √400 = 20 ед.
CM = AD, т.к. AM отсекает от трапеции ABCD прямоугольник DAMC.
Пусть x ед. меньшее основание трапеции (AD), тогда (x+20) ед. равно большее основание трапеции (BC). AB+BC+CD+AD=80 ед.
25 + (x + 20) + 15 + x = 80; 60 + 2x = 80; 2x = 20; x = 10
Если меньшее основание AD прямоугольной трапеции ABCD составляет 10 ед. ⇒ большее основание BC = 30 ед.
Формула площади нашей прямоугольной трапеции : (AD+BC)/2*AM.
⇒ S тр. ABCD = (10 + 30)/2 * 15 = 40/2 * 15 = 20 * 15 = 300 ед.кв.