Дано :
Четырёхугольник ABCD - параллелограмм.
Отрезок DB - диагональ = 13 см.
∠ABD = 90°.
CD = 12 см.
Найти :
S(ABCD) = ?
AB ║ CD (по определению параллелограмма).
Рассмотрим накрест лежащие ∠ABD и ∠BDC при параллельных прямых АВ и CD и секущей BD.
При пересечении двух прямых секущей накрест лежащие углы равны.То есть -
∠ABD = ∠BDC = 90°.
Тогда отрезок BD - ещё и высота параллелограмма ABCD (по определению).
Площадь параллелограмма равна произведению его стороны и высоты, опущенной на эту сторону.Следовательно -
S(ABCD) = BD*CD
S(ABCD) = 13 см*12 см
S(ABCD) = 156 см².
156 см².
Поделитесь своими знаниями, ответьте на вопрос:
В правильной треугольной пирамиде SABC точка L — середина ребра AC, S — вершина. Известно, что BC = 6, а SL = 5. Найдите площадь боковой поверхности пирамиды. Решите подробно)
ОтвСтороны AB=AC=BC=6, так как треугольник ABC – равносторонний (основание правильной треугольной пирамиды). Гранями правильной треугольной пирамиды являются равнобедренные треугольники со сторонами AS=CS=BS. Тогда отрезок SL – высота треугольника ASC. Площадь боковой поверхности пирамиды равна сумме площадей трех его треугольных граней и равна
,
откуда
.
ответ: 45.ет:
Объяснение: