Николаевич-Золотая832
?>

5.В треугольнике АВС угол А равен 70º, угол С равен 90º. СД-биссектриса. Найдите углы треугольника ДСА.

Геометрия

Ответы

lukanaft

45°  70°  65°

Объяснение:

∠АСД=∠ВСД=45° по определению биссектрисы

∠А=70° по условию

∠АДС=180-45-70=65°

Bulanova
Пусть общая хорда AB , O₁ и O₂ центры окружностей ;O₁A=O₂A =r ,O₁O₂ =r.
---
O₁O₂ ⊥ AB.   ΔO₁A O₂ (также ΔO₁BO₂)  равносторонние  со стороной r.
AB= 2*(r√3)/2)⇒r =(AB√3)/3 .

Пусть AB и CD  взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.

R - ?
Например , из ΔACD:  AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.

ΔAPC =ΔBPD (по катетам ) ⇒AC =DB =√(10² +16²) =2√(5² +8²) =2√89 (см).
ΔAPD  равнобедренный прямоугольный треугольник
⇒∠ADP  || ∠ADC||  =∠DAP=45° . 
Следовательно :
R =AC/2sin∠ADC =AC/2sin45° =(2√89)/(2*1/√2) =√178 (см).
festjob
Площадь треугольника АСD по формуле Герона:
S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, a,b,c - стороны.
В нашем случае р=14:2=7, тогда S=√(7*1*2*4) = 2√14.
S=(1/2)*h*AD, отсюда высота  треугольника АСD равна
h=2S/AD=(2√14)/3.
Тогда катет HD по Пифагору равен HD=√(CD²-h²)=√(9-56/9)=5/3.
Следовательно, отрезок АН=6-5/3=(18-5)/3=13/3.
По свойству высоты, опущенной из тупого угла на большее основание равнобокой трапеции, отрезок АН равен полусумме оснований трапеции. Тогда ее площадь равна
S=АН*h=(13/3)*(2√14)/3=26√14/9 ≈ 12,1.
ответ: S=26√14/9 ≈ 12,1.

Найдите площадь равнобедренной трапеции, у которой большее основание равно 6 см, боковая сторона 3 с

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

5.В треугольнике АВС угол А равен 70º, угол С равен 90º. СД-биссектриса. Найдите углы треугольника ДСА.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

vardartem876
sanyaborisov910067
vasearu
egoryuzbashev
molodoychek
Anastasiya
goldglobustour725
Nikolaevna1623
postbox
Владислав-Александр32
Nikita_Lina1305
eurostom
dilshermatov5806
Dmitrievna405
dbakun