S=((25+32):2)*h. h= sin *8 =0,25*8=2. Тогда, S=((25+32):2)*2=57
fil-vasilij90
07.11.2022
Проекция ромба АВСD ра плоскость α, проходящую через сторону АВ - параллелограмм АВС1D1. Отрезок C1D1 параллелен и равен отрезку АВ, так как СD параллельна и равна АВ (стороны ромба). Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру. Проведем через вершину ромба D плоскость DНD1, перпендикулярную ребру АВ. Тогда в прямоугольном треугольнике DНD1 угол DHD1=60° (угол между плоскостями по определению). Тогда <D1DH=30° и D1H=DH*Sin30° (так как DH - гипотенуза). Sin30=1/2. D1H=DH/2. Заметим, что DH - высота ромба ABCD, а D1H - высота параллелограмма АВС1D1. Площадь ромба (формула): Sabcd=(1/2)*D*d. Sabcd=(1/2)*20*14=140см². Площадь параллелограмма (и, естественно, ромба) равна произведению высоты параллелограмма (ромба) на его сторону. Sabcd=AB*DH (1). Sabc1d1=AB*D1H (2). Разделим (2) НА (1): Sabc1d1/Sabcd = AB*D1H/AB*DH =D1H/DH =DH/(2DH) = 1/2. Sabc1d1=140*(1/2) = 70см².
dpolkovnikov
07.11.2022
В этой задаче главное угол М и биссектриса этого угла; биссектриса является геометрическим местом точек, равноудаленных от сторон угла; каждая точка биссектрисы находится на одинаковом расстоянии от сторон угла, расстояние от точки до прямой измеряется длиной перпендикуляра, опущенного из точки на прямую. Возьмем т.О, она находится на расстоянии 9 см от прямой МР, т.к. ОК - перпендикуляр, опущенный из т.О на МР и равен 9 см; опустим из т.О перпендикуляр на МN, его длина тоже 9см, это свойство биссектрис. ответ: расстояние от т.О до MN 9см.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Основная трапеция равна 25 и 32 одна из боковых сторон равна 8 а синус угла между ней и одним оснований равен 0, 25 найдите площадь трапеции