Вычислите длину дуги окружности с радиусом 6 см, если её градусная мера равна 150 градусов. Чему равна площадь соответствующего данной дуги кругового сектора?
Сумма углов,прилежащих к одной стороне параллерограмма, равна 180°. Значит, острый угол равен 180-135=45°; Высота, боковая сторона и половина стороны, на которую опущена высота образуют прямоугольный треугольник. В этом треугольнике два острых угла равны по 45°,значит этот треугольник равнобедренный. Боковые стороны равны, значит половина стороны на которую опущена высота равна этой высоте и равна 4 см. А вся эта сторона равна 4*2=8 см; Боковая сторона параллерограмма равна: а²=4²+4²; а=√32=4√2 см; Периметр равен Р=8+8+4√2+4√2=16+8√2 см; Площадь равна: S=4*8=32 см²;
mamanger
21.07.2021
Сумма углов,прилежащих к одной стороне параллерограмма, равна 180°. Значит, острый угол равен 180-135=45°; Высота, боковая сторона и половина стороны, на которую опущена высота образуют прямоугольный треугольник. В этом треугольнике два острых угла равны по 45°,значит этот треугольник равнобедренный. Боковые стороны равны, значит половина стороны на которую опущена высота равна этой высоте и равна 4 см. А вся эта сторона равна 4*2=8 см; Боковая сторона параллерограмма равна: а²=4²+4²; а=√32=4√2 см; Периметр равен Р=8+8+4√2+4√2=16+8√2 см; Площадь равна: S=4*8=32 см²;
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Вычислите длину дуги окружности с радиусом 6 см, если её градусная мера равна 150 градусов. Чему равна площадь соответствующего данной дуги кругового сектора?
Значит, острый угол равен 180-135=45°;
Высота, боковая сторона и половина стороны, на которую опущена высота образуют прямоугольный треугольник. В этом треугольнике два острых угла равны по 45°,значит этот треугольник равнобедренный. Боковые стороны равны, значит половина стороны на которую опущена высота равна этой высоте и равна 4 см. А вся эта сторона равна 4*2=8 см;
Боковая сторона параллерограмма равна: а²=4²+4²; а=√32=4√2 см;
Периметр равен Р=8+8+4√2+4√2=16+8√2 см;
Площадь равна: S=4*8=32 см²;