Окружности будут равные, т.к. их диаметры равны, как отрезки параллельных прямых, заключенные между параллельными основаниями трапеции)) центры окружностей расположены на биссектрисах соотв углов: CO1, DO1, CO2, DO2 CO1 _|_ DO1 как биссектрисы углов, сумма которых = 180 градусов))) аналогично CO2 _|_ DO2 CO2DO1 --прямоугольник, диагонали прямоугольника равны: CD=O1O2 радиус окружностей можно найти из прямоугольного треугольника, построив еще одну высоту трапеции))) отрезки касательных к окружности, проведенных из одной точки, равны)))
bufetkonfet53
17.12.2021
Искомые углы -- углы между скрещивающимися прямыми))) чтобы построить такой угол, нужно построить прямые, параллельные рассматриваемым прямым и лежащие в одной плоскости))) применить удобнее теорему косинусов... ответ на третий вопрос: ДА. Крайние положения для точки Х1 -- это точки В1 и С1 и значение косинуса 30 градусов лежит между косинусами углов A1OD1 (О -- точка пересечения диагоналей основания), A1C1D1 (в первой четверти косинус убывает с увеличением угла... если точка Х1 движется от точки С1 к В1, рассматриваемый угол увеличивается)))
центры окружностей расположены на биссектрисах соотв углов: CO1, DO1, CO2, DO2
CO1 _|_ DO1 как биссектрисы углов, сумма которых = 180 градусов)))
аналогично CO2 _|_ DO2
CO2DO1 --прямоугольник, диагонали прямоугольника равны: CD=O1O2
радиус окружностей можно найти из прямоугольного треугольника, построив еще одну высоту трапеции)))
отрезки касательных к окружности, проведенных из одной точки, равны)))