Васильева-Александрович
?>

Плоскость, пересекающая правильный тетраэдр DАВС, параллельна ребрам DА и ВС. Определите вид многоугольника, полученного в сечении.

Геометрия

Ответы

Александрович Алексеевна
Решение в приложенном рисунке.
Вектора.
СУММА. Начало второго вектора совмещается с концом первого, начало третьего — с концом второго и так далее, сумма же n векторов есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом n-го (то есть изображается направленным отрезком, замыкающим ломаную).
РАЗНОСТЬ. Для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое).

Начертите неколлинеарные векторы a,b,c. постройте векторы a+c, c-b
Никита
В основании правильной четырехугольной пирамиды лежит квадрат. Диагонали квадрата взаимно перпендикулярны и в точке пересечения делятся пополам. По Пифагору диагональ квадрата равна а√2, где а -сторона квадрата.
Опустим из точки m перпендикуляр на основание пирамиды. Он "упадет" на диагональ db и разделит ее половину do пополам (так как dm=ms). Итак, md=2, dh=√2/2. По Пифагору mh=√(4-(1/2))=√3,5. Из подобия треугольников hmb и opb имеем: op/mh=ob/bh. Тогда  op=√3,5√2/(√2+√2/2)= 2√7/3√2 =28/18 (возвели числитель и знаменатель в квадрат) = 14/9.  ap - перпендикуляр к  mb, то есть искомое расстояние (так как ao - проекция ар, а db - проекция mb на плоскость основания  и эти проекции перпендикулярны).
По Пифагору ap = √(ao²+op²) =√2+14/9 = 4√2/3. 
ответ: расстояние от a до прямой mb = 4√2/3.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Плоскость, пересекающая правильный тетраэдр DАВС, параллельна ребрам DА и ВС. Определите вид многоугольника, полученного в сечении.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Femida76
md-masya
oloinics
Apresov
miheev-oleg578
Sofinskaya1185
irinanikulshina144
Вячеславовна_Сагитович
Овсянкина407
afomin63
lider123
ivanovk3599
bykotatyana
lebedev815
paninsv