Докажем методом от противного. Предположим, что прямые АС и BD не скрещиваются, тогда они могут быть параллельны или могут пересекаться. Но если прямые параллельны или пересекаются, то в том и другом случае они лежат в одной плоскости. Тогда все четыре точки А, В, С и D лежат в одной плоскости, получается прямые АВ и СD лежат в одной плоскости, но этого не может быть, так как по условию они скрещиваются, а скрещивающиеся прямые не лежат в одной плоскости. Пришли к противоречию, следовательно, предположение о том, что АС и BD параллельны или пересекаются неверно, и данные прямые скрещиваются.
xobby18
14.09.2020
Первый рисунок - вид пирамиды в 3д второй рисунок - сечени пирамиды в вертикальной плоскости ОК = ОХ = r ∠CPT = β СР - высота, медиана и биссектриса основания по свойству точки пересечения медиан СК = 2*КР СР = 3*КР ------------ если сторона основания а, то высота основания СР по Пифагору a² = (a/2)² + CP² CP² = 3/4*a² CP = a√3/2 Площадь основания S = 1/2*a*a√3/2 = a²√3/4 KP = CP/3 = a/(2√3) r/KP = tg(β/2) KP = r/tg(β/2) a/(2√3) = r/tg(β/2) a = √3/2*r/tg(β/2) S = a²√3/4 = (√3/2*r/tg(β/2))²√3/4 = 3/4*r²/tg²(β/2)*√3/4 = 3√3/16*r²/tg²(β/2) KP/TK = tg(90-β) =1/tg(β) h = TK = KP*tg(β) = r*tg(β)/tg(β/2) V = 1/3*S*h = 1/3 * 3√3/16*r²/tg²(β/2) * r*tg(β)/tg(β/2) = √3/16*r³tg(β)/tg³(β/2)
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Длина отрезка CB равна 10 дм и KJ:CB= 9:1Вычисли длину отрезка KJ.ответ: KJ=...дм.
Предположим, что прямые АС и BD не скрещиваются, тогда они могут быть параллельны или могут пересекаться. Но если прямые параллельны или пересекаются, то в том и другом случае они лежат в одной плоскости. Тогда все четыре точки А, В, С и D лежат в одной плоскости, получается прямые АВ и СD лежат в одной плоскости, но этого не может быть, так как по условию они скрещиваются, а скрещивающиеся прямые не лежат в одной плоскости. Пришли к противоречию, следовательно, предположение о том, что АС и BD параллельны или пересекаются неверно, и данные прямые скрещиваются.