пусть авса1в1с1 наклонная треугольая ее боковые грани--это грани ава1в1 равна 30,а площадь исчисляется по формуле s=ah, следовательно сторона равна 10 . а опущенная на нее высота h1=30/10=3.точно также с гранью всв1с1:
h2=40/10=4.получается что угол между этими высотами прямой.соединим основания высот,получается прямоугольный треугольник.находим его гипотенузу: 3 в квадрате + 4 в квадрате= 25, то есть гипотенуза равна 5.а это высота третьей грани.значит площадь третьей грани = 5*10=50.
площадь боковой поверхности равна 30+40+50=120 квад.метров
подробнее - на -
Поделитесь своими знаниями, ответьте на вопрос:
Длина наклонной равна 24 сма угол между наклонной и плоскостью равен 30 градусов. найдите длину проекции и наклонной
Здравствуйте, автора учебника я не нашел за то смог решить.
Объяснение:
1) Сумма углов в треугольнике равна 180°. Отсюда сумма острых углов в прямоугольном треугольнике равна 90. Обозначим меньший угол за х, тогда больший угол равен 8х.
Составим уравнение: х+8х=90.
х=10°. Значит меньший угол = 10°, больший = 80°
2) Обозначим острый угол, из которого опущена биссектриса, за х. Тогда этот угол разделяется биссектрисой на два равных угла х/2.
Прямой угол биссектрисой делится на 2 угла по 45°.
Сумма углов в полученном треугольнике: 45+132+х/2=180
х/2=3
х=6°
Тогда третий угол в треугольнике равен 180-90-6=84°
3) Угол 60° биссектрисой разделится на 2 угла 30°
Катет, лежащий против угла 30° равен половине гипотенузы: 18/2=9
4) В прямоугольном треугольнике сумма острых углов равна 90°
В равнобедренном треугольнике углы при основании равны. Основание - гипотенуза, значит острые углы равны 45°
Из этого следует равенство по двум углам и стороне между ними