1704.
Так как треугольник ABC - равносторонний и равнобедренный, то высота в нем является медианой и биссектрисой, значит AH=27√3. Основание AC. Далее рассмотрим треугольник ABH - прямоугольный. По теореме Пифагора находим BH:
BH=81
1706.
Так как треугольник ABC - равносторонний и равнобедренный, то высота в нем является медианой и биссектрисой, значит AH=23√3. Основание AB. Далее рассмотрим треугольник ACH - прямоугольный. По теореме Пифагора находим CH:
CH=69
1711.
Так как треугольник ABC - равнобедренный, то угол B и угол C равны по 30 градусов.
Рассмотрим один из двух треугольников ABH - прямоугольный.
По свойству мы знаем, что катет лежащий против угла в 30 градусов равен половине гипотенузы, отсюда следует, что:
AH=27
Поделитесь своими знаниями, ответьте на вопрос:
1. А и В - точки на ребре прямого двугранного угла. АС и DB - перпендикуляры к ребру, проведенные в разных гранях. Определите расстояние CD, если АВ=6 см, АС=3 см. BD=2 см. 2. Треугольник АВС, прямоугольный при вершине С, опирается катетом АС на некоторую плоскость, образуя с ней двугранный угол в 45 градусов. Катет АС=2 см, а гипотенуза АВ относится к катету ВС, как 3:1. Определите расстояние от вершины В до этой плоскости.
Сумма противоположенных углов вписанного в окружность четырехугольника равна 180 градусов, значит сумма углов B и D = 180. Найдем сначала угол B по теореме косинусов.
угол B = arccos((AB^2+BC^2-AC^2) / (2*AB*BC)) = arccos (225+400-625) / 600) = arccos 0 = 90 градусов(^2 - это в степени 2, т.е. в квадрате), следовательно угол D равен 180 - 90 = 90. Приходим к выводу, что треугольник ACD - прямоугольный треугольник и дальше по теореме пифагора CD=корень из (АС^2-AD^2)=корень из (625-49) = +-24 . ответ: CD = 24.