Дано АВСД-трапеция АВIIСД
уголА= уголД (углы при основании)
уголА+уголВ=180 угол В=150
АВ=СД=14корень3 (боковые стороны)
ВС=10
Найти Sавсд
Решение Проведем высоту ВН к основанию АД рассмотрим треугольник АВН- прямоугольный. АВ-гипотенуза, угол А=180-150=30. Против угла в 30 лежит высота ВН=1/2АВ=7корень3. АС=корень АВ2-ВН2=21.
Проведем высоту СК к основанию АД. Треугольник СДК- прямоугольный. треугольник СДК=треугольнику АВН АВ=СД, угол А=уголД (по гипотенузе и острому углу). Равны и соответственные стороны ВН=СК=21. АД=ВН+ВС+СК=52 Sавсд=1/2(ВС+АД)*ВН=1/2*52*7корень3=182 корень3
Поделитесь своими знаниями, ответьте на вопрос:
По рисунку определите градусную меру следующих углов: ∠NMK = ° ∠MNK = ° ∠MNP = °
∠CBF = ∠CBA + ∠ABF
Отсюда
∠CBA = ∠CBF — ∠ABF = 180° — 76° = 104°
Рассмотрим треугольник ABC
Сумма углов треугольника равна 180°:
∠CBA + ∠BAC + ∠ACB = 180°
104° + ∠BAC + ∠ACB = 180°
По условию задачи нам дан равнобедренный треугольник ACB. Согласно свойству равнобедренного треугольника — углы при основании (CA) равны. Т.е. ∠BAC и ∠ACB равны.
Следовательно
∠BAC + ∠ACB = 180° — 104° = 76°
∠BAC = ∠ACB = 76° : 2 = 38°
Рассмотрим треугольник ACO
По условию задачи в треугольнике ABC проведены биссектрисы CL и AM.
По определению, биссектриса делит угол пополам, следовательно
∠CAO = ∠CAB : 2 = 38° : 2 = 19°
∠ACO = ∠ACB : 2 = 38° : 2 = 19°
Сумма углов треугольника равна 180°:
∠CAO + ∠ACO + ∠AOC = 180°
19° + 19° + ∠AOC = 180°
∠AOC = 180° — 19° — 19° = 142°
ответ:
∠AOC = 142°
Как то так не гарантирую что это правильно