1) Находим апофему А как высоту боковой грани.
А = √(6² - (4/2)²) = √(36 - 4) = √32 = 4√2.
Двугранный угол при ребре основания равен плоскому углу между высотами h, проведенными к боковому ребру из точек А и Д в точку М.
По свойству площади треугольника определяем:
А*а = L*h. Отсюда h = А*а/ L = 4√2*4/6 = 8√2/3.
Получаем равнобедренный треугольник с боковыми сторонами АМ и ДМ по 8√2/3 и с основанием АД, равным диагонали квадрата основания 4√2.
Косинус искомого угла М равен:
cos М = ((8√2/3)² + (8√2/3)² - (4√2)²)/(2*(8√2/3)*(8√2/3)) = -1/8.
Угол равен arccos(-1/8) = 1,696 радиан или 97,18 градуса.
2) Угол между плоскостями АВС и BDC1 равен плоскому углу между отрезками, проведенными из точек С и С1 в точку О пересечения диагоналей нижнего основания .
СО = √((2/2)² + (3/2)²) = √(1 + (9/4)) = √13/2.
ответ: tg(COC1) = CC1/CO = 4/(√13/2) = 8/√13 = 8√13/13.
Поделитесь своими знаниями, ответьте на вопрос:
Шеңбер бойында жататын А нүктесі арқылы АВ диаметрі мен АС хордасы жүргізілген. АС = 8 және ВАС =30°. АВ диаметріне перпендикуляр СМ хордасы жүргізілген және олар К нүктесінде қиылысады. СМ хордасының ұзындығын табыңыз. ответ беріншііі
3√3/2 см.
Объяснение:
Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим
1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).
2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).
3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).
4. S = 1/2ab,
S = 1/2• c • h, тогда
1/2•a•b = 1/2• c • h,
ab = ch,
h = (ab)/c = (3•3√3)/6 = 3√3/2 (см).