Объяснение:
У ромба 2 пары равных внутренних углов, сумма которых равна 360°.
Пусть тупой угол равен 2х, тогда острый будет х. Получаем: 2*2х+2х=360
6х=360
х=60.
Значит острый угол ромба равен 60°, а тупой 120°.
Площадь ромба равна половине произведения его диагоналей.
Найдем диагонали.
Известно, что диагонали ромба делят внутренние углы пополами и пересекаются под прямым углом. Исходя из этого, приняв, что диагонали ромба пересекаются в точке О и ∠АВС - тупой, рассмотрим ΔВСО.
Он прямоугольный с ∠ОСВ= 30° и ∠ОВС=60° при гипотенузе ВС. Значит его катет ВО = ВС·sin30° = 3√3,
катет СО=ВС·sin60° = 6√3 · √3 ÷2 = 9
Мы определили длины половин диагоналей ромба.
Тогда площадь ромба АВСD равна
3√3 × 9 × 2 = 54√3 =
Поделитесь своими знаниями, ответьте на вопрос:
Скільки дотичних до кола можна провести через точку яка лежить усередині круга обмеженого цим колом
пусть CA=5 см и CB=10 см ,высота пирамиды будет CD = 7 см , действительно , DC ⊥ CA ;DC ⊥ CB ⇒DC⊥ плоскости (ABC) .
V =1/3 *(5*10)/2 *7 =175/3 (см³) . * * * 58 1/3 * * *
Sпол = S(ACD) + S(BCD) +S(ABC)+S(ADB) .
S(ACD) =AC*CD/2 =5*7/2 = 17,5 (см²) ;
S(BCD) =BC*CD/2 =10*7/2= 35 (см²) ;
S(ABC) =AC*BC/2 = 5*10/2 =25 (см²) .
Площадь треугольника ADB можно вычислить по формуле Герона (известны AB =√125 ; AD=√74 ; BD =√149 ) , но арифметика скучная ...
Поэтому поступаем иначе ; из вершины прямого угля С треугольника ABC проводим высоту CH ⊥ AB и H соединим с вершиной D.
AB ⊥ HC ⇒ AB ⊥ HD (HC проекция HD) ,<CHD =α.)
S(ABC) =S(ADB)*cosα ⇒ S(ADB)= S(ABC)/cosα =25/cosα.
S(ABC) =AC*BC/2 = AB *СН/2 ⇒ СН =5*10/√125 =10/√5 =2√5 .
Из ΔHCD по теореме Пифагора CD = √(CH²+CD²) =√((2√5)² +7²) =√69;
cosα =CH/CD =2√5/√69 ;
S(ADB)= 25/cosα =25√69/2√5 =2,5√345 (см²) .
Таким образом окончательно
Sпол =(77,5 +2,5√345 ) см².
ответ : ( 77,5 +2,5√345) см² , 175/3 см³.