1. Задание
1.Отрезки делятся пополам, значит КР=РМ
РN=LP
<KPN=<LPN, так как прямые перпендикулярны и оба угла равны 90°.
2.В этих треугольниках соответствующие <К и <М; <N и <L; <K=30°; <N=60°.
2. Задание треугольники.
1 Если АВ=DE,BC=EF; B=E первый признак. (Две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то эти треугольники равны)
2 АВ=DE; BC=EF; (вот это надо выбрать СA=FD) ( три стороны одного треугольника равны трем сторонам другого треугольника, то эти треугольники равны)
3 АС=DF; <A=<D; <С=<F (два угла и сторона между этими углами одного треугольника равны двум углам и стороне между этими углами другого треугольника, то эти треугольники равны)
4 AC=DF <A=<D; DE=AB (две стороны и угол между ними...)
5 <B=<E; <C=<F; BC=ЕF (два угла и сторона между этими углами)
Поделитесь своими знаниями, ответьте на вопрос:
Решите Нужно решить там где написано Самостоятельно
Площа трикутника за найпоширенішою формулою рівна половині добутку основи на висоту, проведеної до неї. Виконуємо обчислення
S= 24*16/2=192 (кв. см.)
Для визначення периметру нам потрібно відшукати довжину бічної сторони.
У рівнобедреному трикутнику висота, проведена до основи в, є бісектрисою і медіаною.
За теоремою Піфагора знаходимо бічну сторону трикутника
b=sqrt(16^2+(24/2)^2)=20 (cм)
Периметр - сума всіх сторін
P= 2*20+24=64 (см)
Знаходимо радіус вписаного в трикутник кола за формулою
r=S/(2*P)=192/(64/2)=192/32=6 (см).
ЗАДАЧА 2 Основа рівнобедреного трикутника дорівнює 24 см бічна сторона 13 см. Обчисліть площу трикутника?
Розв'язання: Площа рівна пів добутку основи на висоту.
Основа нам відома, висоту знаходимо за теоремою Піфагора
h=√(b²-a²/4)= √(169-144)=5 (см).
Далі обчислюємо площу
S=a*h/2=24*5/2=60 (см. кв.)
Объяснение: