Внешняя точка - C, центр большой окружности - O пусть K - точка касания маленькой окружности и описанной в условии фигуры; ok ∩ mn = L проведем через неё касательную к обеим окружностям, пусть точки пересечения ей сторон угла MCN A и B. OK ⊥ AB по св-у касательной OK ⊥ MN, тк ol - биссектриса равнобедренного треугольника mon (равенство углов следует из равенства треугольников cmo и cno) таким образом ab || mn значит Δabc ~ Δamn по двум углам и Δabc - равносторонний (∠cmn = = ∠mnc = ∠cab = ∠cba = 60 (угол между касательной и хордой равен половине дуги заключенной между ними)) большая окружность - вневписанная для Δabc => cn = cm = полупериметру пусть сторона abc = a тогда cm = 1.5a ca / cm = 2 / 3 mn по теореме косинусов из Δmon = 18√3 ab = 2 mn / 3 = 12√3 = a осталось найти радиус вписанной окружности в равносторонний треугольник abc со стороной 12√3 S = p * r = a²√3 / 4 r = a^2 √3 / (4 * 1.5a) = a * √3 / 6 = 12 * 3 / 6 = 6 Длина окружности с радиусом 6 = 2π * 6 = 12π ответ: 12π
sryzhova6392
10.01.2022
1)Треугольник АВС, АВ=25, ВС=29, АС=36, высоты ВН, АМ, СТ, вершина угол В cosВ = (АВ в квадрате + ВС в квадрате - АС в квадрате) / 2 х АВ х ВС= = (625 +841 - 1296) / (2 х 25 х 29) =0,1172 - угол 83 =уголВ , sin 83 (В)= 0,9925 АС/sinВ = АВ/sinС, 36/0,9925=25/sinС, sinС = 0,6892 АС/sinВ = ВС/sinА, 36/0,9925=29/sinА, sinА = 0,7995 ВН = АВ х sinА = 25 х 0,7995 =20 СТ = АС х sinА = 36 х 0,7995 = 28,8 АМ = Ас х sinС = 36 х 0,6892 = 24,8 Найменьшая высота проведена на большую сторону АС
Если найдена одна высота остальные можно искать через отношение ha : hb = (1/a) : (1/b)
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Примени соответственное свойство углов и докажи, что∡KBM=∡KAD+∡MCD:∡ KAD = ∡ K __ __;∡ MCD = ∡ M __ __
пусть K - точка касания маленькой окружности и описанной в условии фигуры;
ok ∩ mn = L
проведем через неё касательную к обеим окружностям, пусть точки пересечения ей сторон угла MCN A и B.
OK ⊥ AB по св-у касательной
OK ⊥ MN, тк ol - биссектриса равнобедренного треугольника mon (равенство углов следует из равенства треугольников cmo и cno)
таким образом ab || mn
значит Δabc ~ Δamn по двум углам и Δabc - равносторонний (∠cmn = = ∠mnc = ∠cab = ∠cba = 60 (угол между касательной и хордой равен половине дуги заключенной между ними))
большая окружность - вневписанная для Δabc
=> cn = cm = полупериметру
пусть сторона abc = a
тогда cm = 1.5a
ca / cm = 2 / 3
mn по теореме косинусов из Δmon = 18√3
ab = 2 mn / 3 = 12√3 = a
осталось найти радиус вписанной окружности в равносторонний треугольник abc со стороной 12√3
S = p * r = a²√3 / 4
r = a^2 √3 / (4 * 1.5a) = a * √3 / 6 = 12 * 3 / 6 = 6
Длина окружности с радиусом 6 = 2π * 6 = 12π
ответ: 12π