Точка M, равноудалена от вершин треугольника ABC, поэтому она лежит на перпендикуляре к (ABC), который восстановлен из центра (O) описанной около ΔABC окружности. Треугольник со сторонами 6, 8, 10 является египетским (10²=6²+8²), поэтому ∠B=90°, а значит центр описанной лежит на середине AC. И её радиус равен AC:2=10:2=5.
Как было сказано ранее MO⊥(ABC).
Рассмотри прямоугольный ΔAOM (∠O=90°): AO=5; AM=13. Найдём второй катет MO (расстояние от M до α) по теореме Пифагора (хотя тут опять Пифагорова тройка 5, 12, 13).
1)Прямая.-Через две точки можно провести одну прямую. Если две прямые пересекаются, то в единственной точке. Отрезок.-Часть прямой, ограниченная двумя точками. Луч.- Часть прямой, ограниченная одной точкой. Он бесконечен в одну любую сторону. 2)Угол. Бывает развёрнутым, прямым, острым, тупым и полным. Существуют смеднве углы, их сумма равна 180°. Все вертекальные углы равны (по градусной мере) . 3) Извини, я не знаю 4) Смежные углы. Сумма градумных мер равна 180°. Имеют одну общюю сторону. 5) Вертикальные угоы. Они равны между собой. Наприиер, если, угол 1 и угол 3 равны, и они находятся в одной плоскости то они вертикальные. 6) Перпендикулярными прямыми называются прямые пересикаемые под прямым углом 7) Паралельные прямые. Те прямые, которые наэодятся в одной плоскости и никогда не пересеикаются (не имеют точки пересичения) 8) Мы не проходили(
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
У рівнобедреному трикутнику кут при основі дорівнює b сторона b. знайти основу й висоту, опущену на основу ть будь-ласка
Точка M, равноудалена от вершин треугольника ABC, поэтому она лежит на перпендикуляре к (ABC), который восстановлен из центра (O) описанной около ΔABC окружности. Треугольник со сторонами 6, 8, 10 является египетским (10²=6²+8²), поэтому ∠B=90°, а значит центр описанной лежит на середине AC. И её радиус равен AC:2=10:2=5.
Как было сказано ранее MO⊥(ABC).
Рассмотри прямоугольный ΔAOM (∠O=90°): AO=5; AM=13. Найдём второй катет MO (расстояние от M до α) по теореме Пифагора (хотя тут опять Пифагорова тройка 5, 12, 13).
MO=√(13²-5²) = √((13+5)(13-5)) = √(18·8) = √(3²·4²) = 12
ответ: 12.