1. Сумма углов прилегающих к боковой стороне равнобедренной трапеции равна 180°:
∠ABC + ∠BAD = 180° и ∠ADC + ∠BCD = 180°
2. Если в равнобедренную трапецию можно вписать окружность, то боковая сторона равна средней лини трапеции:
AB = CD = m
3. Вокруг равнобедренной трапеции можно описать окружность
4. Если диагонали взаимно перпендикулярны, то высота равна полусумме оснований (средней лини):
h = m
5. Если диагонали взаимно перпендикулярны, то площадь трапеции равна квадрату высоты:
SABCD = h2
6. Если в равнобедренную трапецию можно вписать окружность, то квадрат высоты равен произведению основ трапеции:
h2 = BC · AD
7. Сумма квадратов диагоналей равна сумме квадратов боковых сторон плюс удвоенному произведению основ трапеции:
AC2 + BD2 = AB2 + CD2 + 2BC · AD
8. Прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции:
HF ┴ BC, HF ┴ AD
9. Высота (CP), опущенная из вершины (C) на большее основание (AD), делит его на большой отрезок (AP), который равен полусумме оснований и меньший (PD) - равен полуразности оснований
d892644813661946
23.05.2022
Пусть основание прямоугольного параллелепипеда прямоугольник ABCD . AB=CB =x ; BC=AD =7x ;AB₁ =BA₁ =CD₁=DC₁=13 см ;AD₁ =DA₁ =BC₁=CB₁ =37 см. обозн._ высота параллелепипеда AA₁ =BB₁ =CC₁ =DD₁ =h.
Sбок - ?
S бок =2(AB+BC)*AA₁ = 2(x+7x)*h =16xh. По теореме Пифагора для треугольников ABB₁ и ADD₁: { AB²+BB₁² =AB₁² ; AD² +DD₁²=AD₁². { x²+h² =13² ; (7x)² +h²=37². Вычитаем из второго уравнения системы первое (7x)² -x² =37² -13²; 48x² =(37-13)(37+13) ; 2*24x² =24*2*25⇒x =5 ; h =√(13² -5²) =12. S бок =16xh =16*5*12 =16*60 =960 (см²).
ответ: 960 см².
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
У чотирикутнику ABCD кути ABC і ADC прямі, а сторони AB і BC рівні. Відомо, що BH перпендикулярна AD і BH = 1.Знайдіть площу чотирикутника ABCD
Рис.1
Признаки равнобедренной трапеции
Трапеция будет равнобедренной если выполняется одно из этих условий:
1. Углы при основе равны:
∠ABC = ∠BCD и ∠BAD = ∠ADC
2. Диагонали равны:
AC = BD
3. Одинаковые углы между диагоналями и основаниями:
∠ABD = ∠ACD, ∠DBC = ∠ACB, ∠CAD = ∠ADB, ∠BAC = ∠BDC
4. Сумма противоположных углов равна 180°:
∠ABC + ∠ADC = 180° и ∠BAD + ∠BCD = 180°
5. Вокруг трапеции можно описати окружность
Основные свойства равнобедренной трапеции
1. Сумма углов прилегающих к боковой стороне равнобедренной трапеции равна 180°:
∠ABC + ∠BAD = 180° и ∠ADC + ∠BCD = 180°
2. Если в равнобедренную трапецию можно вписать окружность, то боковая сторона равна средней лини трапеции:
AB = CD = m
3. Вокруг равнобедренной трапеции можно описать окружность
4. Если диагонали взаимно перпендикулярны, то высота равна полусумме оснований (средней лини):
h = m
5. Если диагонали взаимно перпендикулярны, то площадь трапеции равна квадрату высоты:
SABCD = h2
6. Если в равнобедренную трапецию можно вписать окружность, то квадрат высоты равен произведению основ трапеции:
h2 = BC · AD
7. Сумма квадратов диагоналей равна сумме квадратов боковых сторон плюс удвоенному произведению основ трапеции:
AC2 + BD2 = AB2 + CD2 + 2BC · AD
8. Прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции:
HF ┴ BC, HF ┴ AD
9. Высота (CP), опущенная из вершины (C) на большее основание (AD), делит его на большой отрезок (AP), который равен полусумме оснований и меньший (PD) - равен полуразности оснований