Решение.
1. Найти косинус наименьшего угла треугольника. Это угол С.
Напротив наименьшей стороны лежит наименьший угол. Значит, напротив угла С лежит сторона АВ=4.
Теорема косинусов гласит: квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.
Для треугольника АВС:
АВ²= ВС²+АС²–2×ВС×АС×cos∠C;
4²= 5²+7²–2×5×7×cos∠C;
16= 25+49–70cos∠C;
70cos∠C= 25+49–16;
70cos∠C= 58;
cos∠C= 58/70, это приблизительно, если округлить до тысячных равно 0,829.
Записываем в ответ:
cos∠C= 0,829.
2. Если воспользоваться калькулятором и посчитать значение угла С, а потом округлить его до целых, то выйдет ∠С=34°.
Поделитесь своими знаниями, ответьте на вопрос:
Краски хватает, чтобы покрасить поверхность шара, радиус которого равен R. На сколько шаров, радиусы которых R/10, хватит этой краски, если толщина слоя краски в обоих случаях одинаковая?
<BCK =<MCK =α -?
Точка K находится вне треугольника (на продолжении биссектрисы AL и MK _среднего перпендикуляра стороны BC).
Из ΔСMK : tqα = MK/MC =MK/(AB/2) =2MK/AB.
Из ΔABL: BL =AB*tq<LAB =AB*tq20° ;
ML =BM - BL = BC/2 - <BL = (AB*tq40°)/2 - AB*tq20°= (AB/2)*tq40°-AB*tq20° =
=(AB/2)*2tq20°/(1-tq²20°) - AB*tq20° =
=(AB/2)*tq20°(2/(1-tq²20°) -2) =(AB/2)*2tq³20°/(1 -tq²20°)=(AB/2)*tq²20°*tq40°.
MK | | BA ; <LKM = <LAB =20° ;
Из ΔKML: MK =ML*ctq<LKM⇔MK=AB/2)*tq²20°*tq40°*ctq20° =(AB/2)*tq20*tq40°;
окончательноьно :
tqα = 2MK/AB = 2*(AB/2)*tq20*tq40°/ AB =tq20°*tq40°.
ответ : α = arctq (tq20°*tq40°) .
(пример некрасивого решения)