Пусть точка вне плоскости М.
Т.к. она равноудалена от вершин треугольника АВС, то ее перпендикуляр МН (расстояние до треугольника) опускается в центр описанной около треугольника окружности. Центр описанной около прямоугольного треугольника окружности лежит в середине гипотенузы.
Значит НВ = АВ:2 = 6см
Получился прямоугольный треугольник МВН: гипотенуза МВ = 10см,
катет НВ = 6см и катет МН, который нужно найти.
Теорема Пифагора
МН² = МВ² - НВ² = 100 - 36 = 64 = 8²
ответ: расстояние от точки до плоскости 8 см
Объяснение:
Через две пересекающиеся прямые можно провести плоскость, и притом только одну.
Две стороны треугольника однозначно принадлежат ДВУМ пересекающимся прямым - т. е. они принадлежат одной плоскости, обозначим ее β, а т. к. они параллельны другой плоскости из условия обозначим ее α, то и эти обе плоскости параллельны αIIβ. Т .к. две точки третьей стороны принадлежат плоскости β (точки пересечения с другими сторонами, которые ей принадлежат), то и вся она принадлежит β. Т. к. αIIβ то и 3-я сторона II α
Поделитесь своими знаниями, ответьте на вопрос:
Задано точки A(1; 6; 4), B(3; 2; 5), C(0; - 1; 1), D(2; - 5; 2 Яке з наведених тверджень правильне? А) AB=CD; Б) AB=2CD; В) AB=-CD ; Г) AB=1/2 CD
Б и В - правильные ответы
Объяснение:
Вот так