Две окружности с центтрами О₁ и О₂ касаются внешним образом в точке К. Длина отрезка О₁ О₂ Равна 24см. Найдите радиусы окружностей, если один из них в 3 раза болшьше, чем второй.
PΔ=36, треугольник правильный, значит сторона треугольника равна : 36:3=12. Опустим высоту в треугольнике до пересечения с окружностью. Соединим полученную точку с одной из оставших вершин заданного треугольника. Получим прямоугольный треугольник, гипотенуза которого является диаметром окружности. Угол между высотой треугольника и его стороной равен 30°. Высота в правильном треугольнике является и биссектрисой и медианой. 60°:2=30°. Вычислим диаметр окружности: d=12:cos30°=12:(√3/2)=24/√3=24·√3/√3·√3=24√3/3=8√3. Диагональю квадрата является диаметр окружности. Обозачим сторону квадрата через а. По теореме Пифагора: a²+a²=d², 2a²=(8√3)². 2a²=64·3, a²=32·3=16·2·3, a=√16·6=4√6. a=4√6.
magazin-71
07.12.2020
Если трапеция вписана в окружность, то центр этой окружности может лежать только на БОЛЬШЕМ из оснований, так как диаметр - наибольшая из хорд окружности. Теорема: "(угол между пересекающимися хордами). Угол между двумя пересекающимися хордами равен полусумме высекаемых ими дуг: α=(дугаАВ+дугаCD)/2". В нашем случае пересекающиеся хорды - это диагонали трапеции. Дуги АВ и CD равны, так как стягиваются равными хордами (трапеция равнобедренная). Тогда градусная мера этих дуг равна 48°. На эти же дуги опираются вписанные углы АСВ и ВDA. Значит эти углы равны по 24°. Углы АВС и ВСD равны 180°-24°=156°. (свойство трапеции). ответ: углы трапеции <A=<D=24°, <B=<C=156°.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Две окружности с центтрами О₁ и О₂ касаются внешним образом в точке К. Длина отрезка О₁ О₂ Равна 24см. Найдите радиусы окружностей, если один из них в 3 раза болшьше, чем второй.
36:3=12.
Опустим высоту в треугольнике до пересечения с окружностью. Соединим полученную точку с одной из оставших вершин заданного треугольника. Получим прямоугольный треугольник, гипотенуза которого является диаметром окружности. Угол между высотой треугольника и его стороной равен 30°. Высота в правильном треугольнике является и биссектрисой и медианой. 60°:2=30°.
Вычислим диаметр окружности:
d=12:cos30°=12:(√3/2)=24/√3=24·√3/√3·√3=24√3/3=8√3.
Диагональю квадрата является диаметр окружности. Обозачим сторону квадрата через а.
По теореме Пифагора: a²+a²=d², 2a²=(8√3)².
2a²=64·3,
a²=32·3=16·2·3,
a=√16·6=4√6.
a=4√6.