Раз AB - диаметр, то треугольник прямоугольный. Таким образом угол С = 90°. Теперь, если обозначить центр описанной окружности О, то треугольники OBC и OCA равнобедренные (с длиной равных бедер равных радиусу окружности). Рассмотрим OBC с известным углом при вершине О равным 68°. Очевидно, его углы при основании будут равны (180° - 68°)/2 = 112/2 = 56°. То есть один углов (угол CBA или B) в нашем исходном прямоугольном треугольнике равен 56°. А второй угол (при вершине A) будет равен 90° - 56° = 34°
tatasi
16.12.2022
Если разбить этот четырехугольник на 4 треугольника с вершинами в центре окружности, то площадь четырехугольника S получится равной сумме площадей этих четырех треугольников - причем их высоты одинаковы и равны радиусу вписанной окружности: S = h*|AB|/2 + h*|BC|/2 + h*|CD|/2 + h*|DA|/2 или S = h*(|AB| + |BC| + |CD| + |DA|)/2. То есть площадь равна произведению радиуса окружности на половину периметра. Нетрудно показать, для четырехугольника с вписанной окружностью верно следующее соотношение: |AB| + |BC| + |CD| + |DA| = (|AB| + |CD|)*2 = (|BC| + |DA|)*2, то есть S = h*(|AB| + |CD|) = h*(|BC| + |DA|) = 6*28 = 168 кв. см
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
В прямоугольном треуг. АВС с прямым углом С проведена биссектрисаАК.Внешний угол при вершине В равен 135градусов.Найдите углы треуг. АКВ. РЕШЕНИЕ
Объяснение:
Дано: треуг ACB-прямоуг.
AD-биссектриса
угол D в треуг ADB=110°
Найти: внешний угол В
Рассмотрим треуг DCA и треуг ACD
угол CAD = угол DAB (т.к. AD - биссектриса)
угол D в треуг ADB=110°
угол D в треуг ACD = 180-110=70° (как смежные)
угол А в треуг CAD=180-(90+70) = 20° ⇒
рассмотрим треуг ADB
угол D=110°
угол А=20° (биссектриса делит угол А пополам)
угол B=180-(110+20) = 50° ⇒
внешний угол B= 180-50 = 130°