Проанализируем исходные данные.
Дан эллипс с центром в точке (2:-1) и малой осью, равной 4.
Одна из директрис задана уравнением y+5=0, что равносильно у = -5.
Тогда расстояние от центра до директрисы равно |-5 - (-1)| = 4.
Рассмотрим точку эллипса на малой оси. Она удалена от центра на 4 и от директрисы на 4 единицы (так как малая ось параллельна директрисе).
Так как все точки параболы равноудалены от директрисы и фокуса, то получается, что фокус параболы находится в её центре.
Это говорит о том, что мы имеем не эллипс, а окружность радиуса 4.
Её уравнение: (х - 2)² + (у + 1)² = 4².
Поделитесь своими знаниями, ответьте на вопрос:
З точки М, що лежить поза колом, проведено до кола дві дотичні МА і МВ; де А і В – точки дотику, кут МВА = 6о°. Знайдіть відстань від точки М до центра кола, якщо радіус кало дорівнює 10 см.
1.
Назовем треугольник АВС(угол А прямой, угол С=60 градусов).
Дано:
Угол С=60градусов
СЕ-биссектриса
ЕС=АВ-1
Найти: СЕ
РАссмотрим треугольник АСЕ. Угол АСЕ=30 градусов, т.к. биссектриса уделит угол на два равных угла. Сторона, лежащая против угла в 30 градусов, равна половине гипотенузы. Поэтому ЕА=ЕС\2
Вернемся к треугольнику АВС. т.к. угол С равен 60 градусов, а угол А прямой, угол В=30 градусов. А значит треугольник ВСЕ равнобедренный. ЕС=ЕВ
ЕС=АВ-1
ЕС=АЕ+ЕВ-1
ЕС=ЕС\2 + ЕС - 1
3ЕС-2=2ЕС
ЕС=2
ответ: 2 см